No Image

Абсолютные датчики углового положения

СОДЕРЖАНИЕ
123 просмотров
12 декабря 2019


Абсолютные датчики углового положения

Среди обширного класса измерительных преобразователей угловых перемещений абсолютные датчики углового положения занимают особое место. Эти датчики позволяют решать задачи прецизионных измерений не только величин угловых перемещений, но и без потери точности могут обеспечить «жесткую» координатную привязку различного рода позиционируемых объектов при их статическом положении. Часто абсолютные датчики углового положения называют абсолютными энкодерами, преобразователями считывания углового положения или преобразователями угол-код.

Абсолютные датчики углового положения каждому значению углового положения вала (преобразуемого угла) ставят в соответствие значение числового эквивалента, который формируется на выходе датчика, как правило, в виде сигнала цифрового кода. При этом указанное взаимно однозначное соответствие сохраняется, как при движении вала, так и при его неподвижном положении и не требует возвращения вала в начальную позицию. Таким образом, значение кода не теряется после выключения и включения питания датчика, восстанавливается после прохождения помехи или превышения допустимой скорости вращения вала, ограничиваемой правильным считыванием кода. Приведённые свойства выгодно отличают абсолютные датчики углового положения от инкрементных угловых преобразователей.

Эталоном угловой меры в абсолютных датчиках служит установленный на входном валу измерительный лимб с кодовой шкалой, имеющей однодорожечную или многодорожечную кольцевую структуру. Упрощенное изображение измерительного лимба с 9-ти дорожечной кодовой шкалой изображено на рис. 1.

В основе принципа действия таких датчиков лежит анализ позиционного сочетания уровней сигналов дискретных фотоприемников, располагаемых в формируемой светотеневой картине соответствующих концентрических кольцевых кодовых дорожек или на одной дорожке (в случае однодорожечного кода).

Совокупность указанных фотоприемников образует считывающее фотоприёмное устройство (матрицу считывающих фотопремников), конкретное выполнение которого определяется структурой используемого кода и конструкцией датчика.

В абсолютных датчиках углового положения увеличение количества кодовых разрядов соответствует увеличению их угловой разрешающей способности.

Как правило, для многодорожечных шкал датчиков положения используют позиционные коды. Их особенность заключается в том, что в отличие от обычных кодов, они обладают свойством непрерывности бинарной комбинации (так называемая «одношаговость кода»): изменение кодируемого числа на единицу соответствует изменению кодовой комбинации только в одном разряде (см, рис.2).

Это свойство позволяет свести погрешность считывания кода к значению младшего разряда, обеспечив, тем самым, высокую информационную надёжность преобразования угол-код. Наибольшее распространение среди кодов этого класса получил код Грея. Этот код обладает способностью зеркального отображения информации, то есть инвертированием старшего бита можно менять направление счета и, таким образом, задавать направление вращения вала датчика. Для осуществления дальнейшей обработки Грей-кода на основе законов двоичной математики его преобразуют в двоичный код. Реализацию такого кодового преобразования легко осуществить с помощью логических элементов «исключающее или» аппаратным или программным способами.

По диапазону измерений абсолютные датчики углового положения делятся на однооборотные и многооборотные. В датчиках первого типа кодирование углового положения вала осуществляется в пределах изменения угла поворота от 0°до 360°. В многооборотных датчиках рабочий диапазон превышает 360°. Они строятся на основе абсолютных однооборотных датчиков, последовательно соединённых между собой через двоичные понижающие редукторы. Как правило, используется один датчик точного отсчёта и один или несколько датчиков грубого отсчёта. Точный отсчёт используется для преобразования в цифровой код в пределах одного оборота вала, а грубые — для счёта числа оборотов.

Для уменьшения погрешностей, вносимых редукторами и датчиками грубого отсчёта, применяются электронные методы согласования грубых и точных отсчётов.

Устройство абсолютного датчика углового положения

Формируемый осветителем 1,2 пучок лучей создаёт в плоскости анализирующей маски 4 теневое изображение кодовой шкалы 3. Анализирующая маска, представляет собой совокупность щелевых диафрагм, выделяющих необходимые для анализа участки изображения кодовой шкалы. За каждой диафрагмой по ходу лучей установлен дискретный фотоприемник, располагаемый в зоне теневого изображения соответствующей кольцевой дорожки кодовой шкалы, В распространённом случае считывающее фотоприемное устройство представляет собой анализирующую маску в виде одной узкой щелевой диафрагмы с установленной за ней линейкой фотодиодов 5.

Читайте также:  Взбить белки в крепкую пену блендером

Конструктивно абсолютный датчик включает в себя оптико-механический узел, оптико-электронное считывающее устройство, а также электронную схему выделения и обработки сигналов фотоприёмников.

Оптико-механический узел датчика представляет собой корпусную деталь с прецизионными направляющими, обеспечивающими вращательное движение вала и жестко связанного с ним измерительного лимба, центрированного по отношению к оси вращения вала.

Оптико-электронное считывающее устройство содержит узел осветителя и считывающее фотоприемное устройство (матрицу фотоприемников с установленной перед ней анализирующей маской), а также электронную схему выделения и обработки сигналов фотоприемников.

В общем случае, считывающее фотоприемное устройство содержит матрицу пространственно распределённых фото приемников с установленной перед ними анализирующей маской.

Для получения значений кода на один оборот вала, кратных одному угловому градусу, используют укороченный код Грея, начальное значение которого не соответствует нулевой позиции обычного кода Грея, а имеет значение некоторого смещения, позволяющего при замыкании кодовой последовательности сохранить основные его свойства.

В зависимости от уровня сигналов, снимаемых с фотоприемников, им присваиваются значения 0 или 1, то есть получаемые кодовые комбинации являются бинарными кодами.

Статья подготовлена специалистами ОАО "СКБ ИС" — российского производителя датчиков перемещений.

Синонимы: абсолютный датчик перемещения, абсолютный угловой датчик, абсолютный датчик поворота, абсолютный датчик угла, абсолютный датчик угловых перемещений, абсолютный энкодер, абсолютный оптический энкодер, преобразователь угол-код.

Датчик угла поворота, также называемый энкодер, предназначен для преобразования угла поворота поворотного механизма (вала) в электрические сигналы. Энкодеры могут быть контактными магнитными, оптическими и др. Мы рассмотрим самые распространенные – оптические. Устройство оптического датчик угла поворота (оборотов) состоит из светоизлучателей (чаще применяются инфракрасные светодиоды), фотоприемников (фототранзисторов), и проходящего между светоизлучателем и светоприемником кодового диска, который имеет прозрачные участки. Рисунок на кодовом диске энкодера называют растр. По количеству тактов (или времени между двумя тактами) определяется положение (скорость вращения).

С помощью одного светодиода и одного фототранзистора можно измерять скорость вращения или перемещение без учета направления вращения. Такой датчик сложно назвать энкодером, так как, при реверсе нет возможности точно определить положение или направление вращения. Это просто датчик скорости вращения.


Конструктивное исполнение датчиков вращения:

Энкодеры подразделяются на инкрементальные энкодеры (квадратурные энкодеры) и абсолютные энкодеры. Инкрементальные энкодеры, формируют импульсы, по которым принимающее устройство определяет текущее координаты путем подсчета числа импульсов. Для привязки системы отсчета к началу координат инкрементальные датчики перед началом работы должны быть установлены в начальное положение.

Простой инкрементный энкодер позволяет определить направление вращения. Для изготовления модели инкрементного энкодера достаточно два фототранзистора, одного светодиода. Принцип работы следующий. Светодиод постоянно светит сквозь вращающийся диск с отверстиями на принимающие фототранзисторы. Отверстия в диске энкодера сделаны таким образом, чтобы были положения, при которых диск закрывает оба фототранзистора, и открывает оба. При вращении диска энкодера, фототранзисторы открываются и закрываются в определенной последовательности. Именно по последовательности переключений и можно определить направление вращения. Например, если были “засвечены” оба фототранзистора, то при вращении в одну сторону диск закроет сразу один фототранзистор, а при вращении в другую – другой. Зная, какой фототранзистор был закрыт после засветки обеих, определяем направление вращения.

Читайте также:  Замена манжеты люка стиральной машины атлант

В старых компьютерных мышках, в которых применялся шарик, присутствовали два аналогичных энкодера. В них использовались специальные фототранзисторы “2 в одном”:

В нашей конструкции мы используем два отдельных фототранзистора:

Иногда требуется знать положение сразу после включения устройства. Т.е. нет технической возможности вывести устройство в исходное положение и затем по количеству “кликов” оценить положение.

Абсолютный энкодер показывает текущую координату сразу при включении, без необходимости предварительной установки в исходное положение. Простейший пример – датчик направления ветра для метеостанции. При включении станции надо сразу определить направление ветра, т.е. угол поворота. Энкодер имеет элементы излучения (светодиоды) и фотоприемники (фототранзисторы), между ними вращается диск энкодера. В определенном положении засвечиваются те или иные фототранзисторы. По комбинации включенных транзисторов определяем положение вала. Промышленные энкодеры имеют большоее количество разрядов, следовательно, имеют высокую точность. Зачастую имеют несколько дисков, связанных через шестерни. Некоторые энкодеры снабжаются последовательным интерфейсом. Но в основе их работы заложен тот же принцип.

Ниже приведена модель 4 разрядного абсолютного энкодера с кодом Грея. 4 разряда – это 16 секторов – 360/16 = 22,5 градуса приемлемая точность для измерения направления ветра. Если возникают проблемы с габаритами, конструктивно диск можно разделить на части. В приведенном примере так и сделано.

Исходный растр диска:

разбит на два диска:

Между дисками установлена двусторонняя плата со светодиодами, за дисками фототранзисторы. Таким образом были уменьшены габариты.

Внимательный читатель мог заметить, что растр кодового диска абсолютного энкодера не соответствует обычному двоичному коду. В энкодерах применяют специальный код Грея.

Что такое код Грея?
Представьте себе некоторое устройство, скажем датчик положения, которое выдает положение в двоичном виде по трем проводам. На выходе могут быть следующие комбинации в двоичном коде:

000
001
010
011
100
101
110
111

Абсолютные датчики углового положения

Абсолютные датчики углового положения

Среди обширного класса измерительных преобразователей угловых перемещений абсолютные датчики углового положения занимают особое место. Эти датчики позволяют решать задачи прецизионных измерений не только величин угловых перемещений, но и без потери точности могут обеспечить «жесткую» координатную привязку различного рода позиционируемых объектов при их статическом положении. Часто абсолютные датчики углового положения называют абсолютными энкодерами, преобразователями считывания углового положения или преобразователями угол-код.

Абсолютные датчики углового положения каждому значению углового положения вала (преобразуемого угла) ставят в соответствие значение числового эквивалента, который формируется на выходе датчика, как правило, в виде сигнала цифрового кода. При этом указанное взаимно однозначное соответствие сохраняется, как при движении вала, так и при его неподвижном положении и не требует возвращения вала в начальную позицию. Таким образом, значение кода не теряется после выключения и включения питания датчика, восстанавливается после прохождения помехи или превышения допустимой скорости вращения вала, ограничиваемой правильным считыванием кода. Приведённые свойства выгодно отличают абсолютные датчики углового положения от инкрементных угловых преобразователей.

Эталоном угловой меры в абсолютных датчиках служит установленный на входном валу измерительный лимб с кодовой шкалой, имеющей однодорожечную или многодорожечную кольцевую структуру. Упрощенное изображение измерительного лимба с 9-ти дорожечной кодовой шкалой изображено на рис. 1.

В основе принципа действия таких датчиков лежит анализ позиционного сочетания уровней сигналов дискретных фотоприемников, располагаемых в формируемой светотеневой картине соответствующих концентрических кольцевых кодовых дорожек или на одной дорожке (в случае однодорожечного кода).

Совокупность указанных фотоприемников образует считывающее фотоприёмное устройство (матрицу считывающих фотопремников), конкретное выполнение которого определяется структурой используемого кода и конструкцией датчика.

Читайте также:  Выкройка платья а силуэта для девочки

В абсолютных датчиках углового положения увеличение количества кодовых разрядов соответствует увеличению их угловой разрешающей способности.

Как правило, для многодорожечных шкал датчиков положения используют позиционные коды. Их особенность заключается в том, что в отличие от обычных кодов, они обладают свойством непрерывности бинарной комбинации (так называемая «одношаговость кода»): изменение кодируемого числа на единицу соответствует изменению кодовой комбинации только в одном разряде (см, рис.2).

Это свойство позволяет свести погрешность считывания кода к значению младшего разряда, обеспечив, тем самым, высокую информационную надёжность преобразования угол-код. Наибольшее распространение среди кодов этого класса получил код Грея. Этот код обладает способностью зеркального отображения информации, то есть инвертированием старшего бита можно менять направление счета и, таким образом, задавать направление вращения вала датчика. Для осуществления дальнейшей обработки Грей-кода на основе законов двоичной математики его преобразуют в двоичный код. Реализацию такого кодового преобразования легко осуществить с помощью логических элементов «исключающее или» аппаратным или программным способами.

По диапазону измерений абсолютные датчики углового положения делятся на однооборотные и многооборотные. В датчиках первого типа кодирование углового положения вала осуществляется в пределах изменения угла поворота от 0°до 360°. В многооборотных датчиках рабочий диапазон превышает 360°. Они строятся на основе абсолютных однооборотных датчиков, последовательно соединённых между собой через двоичные понижающие редукторы. Как правило, используется один датчик точного отсчёта и один или несколько датчиков грубого отсчёта. Точный отсчёт используется для преобразования в цифровой код в пределах одного оборота вала, а грубые — для счёта числа оборотов.

Для уменьшения погрешностей, вносимых редукторами и датчиками грубого отсчёта, применяются электронные методы согласования грубых и точных отсчётов.

Устройство абсолютного датчика углового положения

Формируемый осветителем 1,2 пучок лучей создаёт в плоскости анализирующей маски 4 теневое изображение кодовой шкалы 3. Анализирующая маска, представляет собой совокупность щелевых диафрагм, выделяющих необходимые для анализа участки изображения кодовой шкалы. За каждой диафрагмой по ходу лучей установлен дискретный фотоприемник, располагаемый в зоне теневого изображения соответствующей кольцевой дорожки кодовой шкалы, В распространённом случае считывающее фотоприемное устройство представляет собой анализирующую маску в виде одной узкой щелевой диафрагмы с установленной за ней линейкой фотодиодов 5.

Конструктивно абсолютный датчик включает в себя оптико-механический узел, оптико-электронное считывающее устройство, а также электронную схему выделения и обработки сигналов фотоприёмников.

Оптико-механический узел датчика представляет собой корпусную деталь с прецизионными направляющими, обеспечивающими вращательное движение вала и жестко связанного с ним измерительного лимба, центрированного по отношению к оси вращения вала.

Оптико-электронное считывающее устройство содержит узел осветителя и считывающее фотоприемное устройство (матрицу фотоприемников с установленной перед ней анализирующей маской), а также электронную схему выделения и обработки сигналов фотоприемников.

В общем случае, считывающее фотоприемное устройство содержит матрицу пространственно распределённых фото приемников с установленной перед ними анализирующей маской.

Для получения значений кода на один оборот вала, кратных одному угловому градусу, используют укороченный код Грея, начальное значение которого не соответствует нулевой позиции обычного кода Грея, а имеет значение некоторого смещения, позволяющего при замыкании кодовой последовательности сохранить основные его свойства.

В зависимости от уровня сигналов, снимаемых с фотоприемников, им присваиваются значения 0 или 1, то есть получаемые кодовые комбинации являются бинарными кодами.

Статья подготовлена специалистами ОАО "СКБ ИС" — российского производителя датчиков перемещений.

Комментировать
123 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector