No Image

Азот для растений значение

СОДЕРЖАНИЕ
66 просмотров
12 декабря 2019

Можно смело сказать, что азот в жизни растений играет ключевую роль. И это вряд ли будет преувеличением. Дело в том, что он находится в аминокислотах, в разных белках и других соединениях, имеет ключевое значение для питания. Даже зелёный цвет растений стал возможным, в том числе благодаря этому элементу. Вот почему при недостатке азота листья начинают вянуть, становиться бледными, рост культуры тормозится.

Нехватка азота кажется странной, поскольку этого газа в воздухе очень много. Проблема в том, что он находится в молекулярном, то есть в неактивном состоянии, а в таком виде растение его не может усвоить. Именно поэтому нужны аммиачные и азотнокислые соли. Они очень легко растворяются и довольно быстро попадают по назначению: прямо к растению.

Откуда в природе берётся азот?

В почве на самом деле содержится не так много азота. И попадает он туда благодаря деятельности разных бактерий, которые его связывают. В результате целой цепочки процессов вещество оказывается в подходящем для растений состоянии. Такие бактерии живут колониями на бобовых, причём на каждом – своя разновидность. Люди ещё в древности заметили, что если выращивать соответствующие культуры, то плодородность почвы в целом повышается. Это связано как раз с теми самыми бактериями. Кстати, сами бобовые растения не испытывают из-за такого вот симбиоза недостатка в азоте.

Очень часто помогают справиться с проблемой различные грибы и водоросли. Особую роль в экологическом равновесии играют лишайники. Дело в том, что они первыми поселяются на бедных азотом почвах, а уже следом появляются и другие культуры, когда среда оказывается для них достаточно благоприятной.

Как проявляется нехватка азота?

Нехватку азота можно заметить по внешнему виду растений. Культура начинает медленнее развиваться, она оказывается заметно меньше, чем должна бы быть. Листья становятся бледными и мелкими. При этом количество ветвей и боковых побегов сокращается, зато нарастает корневая масса: так растение стремится компенсировать нехватку азота и активнее добывать его из почвы, тянясь ко всему, что только в состоянии достать. Кроме того, может начаться преждевременное созревание семян.

Длительное голодание приводит к тому, что из листьев уходит зелёный пигмент, они начинают сохнуть, становятся жёлтыми или же красными. Причём этот процесс идёт снизу вверх. Если его сильно запустить, то пойдёт некроз.

Как проявляется избыток азота?

По внешнему виду растений можно определить не только недостаток азота, но и его избыток. Если культуру перекормили, то она будет отличаться насыщенным зелёным цветом, чаще всего – более тёмным по сравнению с обычным. Стебли становятся толстыми, ботва – пышной. Период вегетации затягивается. При этом ткани многих растений набирают сок, на ощупь оказываются заметно мягче, они больше подвержены грибковым заболеваниями и поражениям насекомыми-паразитами. У плодов падает качество. Если азотистых удобрений добавлено слишком много, растение погибнет в течение нескольких дней.

Что нужно учитывать?

Как можно увидеть, переизбыток и недостаток азота одинаково вредны. Чтобы не допустить проблем, нужно учитывать то, сколько питательного элемента требуется конкретной культуре. Не забывайте о том, что пусть и небольшое, но какое-то количество азота в почве всё же содержится. Поэтому если вы – новичок, добавляйте удобрения осторожно, следите за реакцией растений: лучше недокормить, чем перекормить.

Помните и о том, что далеко не каждое вещество одинаково полезно для флоры. В частности, большое количество аммиачных солей ведёт к отравлению и гибели. Поэтому нитраты предпочтительнее. Правда, они способны накапливаться, что нежелательно как для почвы, так и для людей. Вот почему принципиально важно следить за тем, как и на что именно какая культура реагирует, принимать во внимание и другие факторы.

Дело в том, что на усвоение азота растением влияет, например, температура, степень уплотнённости почвы, нехватка воды, малое количество микроорганизмов, чрезмерно большое количество соломы. Всё это нужно учитывать.

Новичкам-садоводам рекомендуют обращать внимание в первую очередь на реакцию растений-индикаторов. Это те культуры, которые ярче всего реагируют на нехватку азота. К ним, в частности, относятся: цветная капуста, кукуруза, зерновые. Даже если вы не собираетесь их выращивать, но если у вас часто возникают проблемы с азотом, можно посадить несколько, чтобы проверять, не ухудшилась ли ситуация с этим элементом. Такой вариант давно используется фермерами. И он для многих дешевле и проще разных тестов.

В целом же, чтобы не возникало проблемы с азотом, достаточно купить удобрения, подходящие конкретной группе растений, развести по инструкции и внимательно наблюдать за реакцией культуры. Как правило, проблем не возникает.

Контакты интернет-магазина График работы: Популярные разделы каталога Информация Помощь Соц. сети

Телефон 8 (800) 550-37-45

Доп. 8 (926) 541-37-37

Доп. 8 (929) 948-48-45

г.Москва ул.Привольная д2 к5

email: morezeleni@gmail.com

Азот – один из самых важных компонентов, необходимых растению. Особо существенно значение азота для растений на стадии вегетации и активного формирования корневой системы и стебля.

Читайте также:  Газовый котел навьен как правильно настроить

В этой статье мы рассмотрим, для чего растениям нужен азот, к чему может привести его нехватка и как распознать признаки недостатка азота, в чем содержится азот для подкормки растений и какие удобрения можно использовать в качестве его источника в домашних условиях.

Роль азота в жизни растений

Азот жизненно необходим растениям для правильного развития, в первую очередь, корневой системы. Он также влияет на метаболизм растений и является строительным элементом для формирования нуклеиновых кислот и других важных соединений.

Все обменные процессы, происходящие в организме растения, от синтеза хлорофилла до усвоения витаминов активизируются благодаря азоту. Недостаток азота может привести к неполноценному урожаю или даже гибели растения.

В чем содержится азот для растений

Общее содержание азота во "взрослом" растении, в зависимости от культуры, может доходить до 5%. При выращивании в домашних условиях корректировать уровень можно с помощью специального питания удобрениями с азотом для комнатных растений. В естественных же условиях существуют 2 основных источника азота для растений:

В первом случае растения получают азот из почвы в виде долгого азота (соль аммония) и быстрого азота (нитраты). Соль аммония содержится в почве постоянно, практически из неё не вымывается, необходима на стадии начального развития растения. Нитраты также находятся в земле, но быстро вымываются из неё. Для уменьшения вымывания азота вносится перегной, который заполняет пространство между частицами почвы.

Азот содержится также и в атмосферном воздухе, однако не все растения способны поглощать это вещество в газообразной форме. Здесь на помощь сельскому хозяйству приходит наука, а именно азотфиксаторы — специальные азотфиксирующие бактерии, которые могут усваивать азот в молекулярном виде непосредственно из воздуха и затем переводить его в подходящий для питания растений вид. Данные бактерии в большом количестве содержатся в корнях бобовых культур.

Признаки недостатка азота у растений

Для определения нехватки азота у растения не требуется специальное биологическое образование или особые познания в сельском хозяйстве. Последствия дефицита видны сразу. Растение выглядит болезненным, меняется цвет листьев, начиная с жилок и прилегающей к ним части листовой пластинки.

При недостатке азота происходит замедление роста растений, ослабляется интенсивность цветения, сокращается вегетационный период, уменьшается содержание белка в растении и как результат снижается урожай.

Восполнение дефицита

Для повышения уровня азота в почве можно использовать калиевую или натриевую селитру, аммиачные или органические удобрения с азотом. Подкормку необходимо осуществлять весной – в активную фазу роста и развития растения. Не рекомендуется вносить данный вид удобрений в средине лета, поскольку это способствует накоплению нитратов в плодах.

Для гидропонного метода выращивания существуют следующие варианты повышения уровня азота:

Минеральные удобрения

Перечисленные питательные составы могут использоваться для любого типа гидропонной системы, отличаются сбалансированным составом, содержат все необходимые микроэлементы и азот в хелатной форме, что позволяет растению быстро его усвоить и сформировать здоровые стебли, листья и плоды.

Стимуляторы образования корневой системы

В результате использования стимулятора, корневая система увеличивается и разрастается, что помогает растению усваивать большее количество питательных веществ. Делая растения крепче и здоровее, что положительно скажется на будущем урожае.

Заключение и полезное видео

Азот – жизненно важный элемент для растения. Его недостаток, ровно, как и избыток, приводит к болезням растений и формированию неполноценного урожая. Внимательно относитесь к состоянию здоровья ваших растений и не пускайте все на самотек, если заметите какие-либо проблемы. Ведь вовремя покормить растение и вернуть его к жизни намного проще, чем выращиваться заново.

А в этом видео мы подробно разбираем, как распознать и вовремя устранить дефицит питательных элементов у вашего растения. Удачных вам экспериментов и большого урожая!

Подпишитесь на нашу рассылку

Азот является незаменимым элементом для питания любого растения. Не зря его называют «кормильцем человечества», поскольку именно азот – ключевой компонент белка, который, в свою очередь, является основной жизни на нашей планете. Поэтому переоценить его значение в системе применения удобрений сложно.

Азот входит в состав всех простых и сложных белков, которые являются главной составной частью протоплазмы растительных клеток. Он также находится в составе нуклеиновых кислот (рибонуклеиновая — РНК и дезоксирибонуклеиновая — ДНК), играющих исключительно важную роль в обмене веществ в организме.

Азот содержится в хлорофилле, фосфатидах, алкалоидах и входит в состав многих других органических веществ растительных клеток. При недостаточном снабжении растений азотом они плохо растут и развиваются, листья приобретают светло-зеленую окраску. Синтез структурных — сложных и ферментных — белков затормаживается или вовсе приостанавливается, как это имеет место, когда в почве находится слишком мало азота в подвижном состоянии.

Поэтому вопрос внесения различных форм биологически активного азота, его применение и циркуляция в различных системах сельского хозяйства является предметом тщательного изучения специалистами, учеными-почвоведами, специалистами по физиологии растений, микробиологов и экологов.

Поведение азота в почве достаточно сложно, и для достижения высокой эффективности внесенных удобрений необходимо понимание процессов его трансформаций. Содержание азота также определяется естественными биологическими процессами в почве, такими как фиксация азота, аммонификация, нитрификация и денитрификация. Магнитуда и размах данных процессов зависит от физиологической активности микроорганизмов, живущих в данной почве. Следует принимать во внимание и тот факт, что на форму почвенного азота независимо от того, удерживается ли он почвой или нет, и остается ли в почве в доступной для растений форме, влияют множество других факторов. К ним относятся различные факторы окружающей среды, такие как влажность почвы, температура, рН почвенного раствора, содержание углеводов, углекислого газа, концентрация кислорода в почвенной атмосфере и др.

Читайте также:  Булочки крученые с сахаром

Фиксация азота представляет собой процесс трансформации атмосферного азота (N2) в органическую форму аммония (-NH2). Фиксация происходит благодаря свободно живущим в почвенной среде некоторым видам бактерий, таким как Clostridium и Azotobacter, сине-зеленым водорослям и симбиозу определенных бактерий и растений-хозяев. Симбиотические бактерии, такие как различные виды Rhizobia, получают углеводы от растения-хозяина. В этом симбиозе оба организма извлекают выгоду от взаимосвязи, в результате микроорганизмы поставляют растению-хозяину очень необходимый восстановленный азот – аммоний, в то время как растение поставляет микроорганизмам Rhizobia углеводы. Данные симбиотические отношения дают растению-хозяину и другие преимущества, которые заключаются в том, что микроорганизмы помогают поглощать связанный азот и нитраты корнями, так как денитроген восстанавливается до аммония (NH3), который уже может быть потреблен растением. Кроме того, данный аммоний представляет собой восстановленную форму, тогда как нитрат, поглощенный растением, представляет собой окисленную форму и требует у растения дополнительной энергии для своей трансформации в аммоний.

Разложение азота до аммонийной формы также может происходить в результате процесса, известного как аммонификация. Этот процесс, при котором органические остатки расщепляются на более простые соединения с большей частью азота, выделяемого в виде аммония, и осуществляется он при помощи аммонифицирующих бактерий. Аммоний, который растворяется в почвенном растворе в виде иона аммония (NH4 + ), может испаряться в атмосферу; может связываться с катионом в почве; может абсорбироваться и ассимилироваться в органические части растения или может окисляться до нитратов другими почвенными микробами.

В почве процесс окисления аммония до нитрита и нитрата называется нитрификацией и осуществляется несколькими нитрифицирующими бактериями и некоторыми грибами. Общий процесс окисления происходит, по меньшей мере, в два этапа, каждый из которых связан со специфическими микроорганизмами. На первой стадии такие микробы, как Nitrosomonas, последовательно добавляют электроны к азоту, сначала образуя гидроксиламин (NH4OH), а затем нитрит (N02 – ). Этот нитрит действует как субстрат для другой группы бактерий, типичных Nitrobacter, которые получают атом кислорода из воды и окисляют нитрит до нитрата (N03 – ). Образующийся таким образом нитрат является наиболее легкой формой, которая усваивается большинством растений.

Нитраты, не использованные растениями, могут испаряться из почвы путем перехода в газообразное состояние или оксида азота (N20) в результате процесса денитрификации. Некоторые денитрифицирующие бактерии могут производить эти газы, которые затем возвращаются в атмосферу. При данном типе трансформации организмы используют азот, а не кислород в качестве акцептора электронов, и, таким образом, этот процесс лучше всего протекает в анаэробных условиях. Денитрификация также может быть достигнута путем поглощения и разложения в растениях.

Независимо от процесса, при помощи которого образуется нитратный азот, в большинстве случаев он легко поглощается корнями растений. Но на данный процесс поглощения в значительной степени влияют физиологическое состояние и возраст конкретных видов растений.

Предпочтения растений к форме азота

Исследования в области питания, о нитратах и об аммонии, показывают, что в зависимости от вида растений, почвенных условий и др. предпочтительной для поглощения может быть любая форма. Несмотря на то, что имеется обширное количество литературы, в которой показано предпочтение аммонийной формы перед нитратной, на сегодняшний день наиболее преобладающей формой азота, используемой растениями, является нитрат.

Аммоний является преобладающим источником азота для растений в анаэробных условиях, например, при выращивании риса. Преимущественное поглощение растениями нитратного азота связано с тем, что в почве нитраты находятся в почвенном растворе, легко передвигаются с током воды и могут быть легко абсорбированы корнями. Для поглощения же аммония необходим контакт корневого волоска с почвенным поглощающим комплексом, удерживающим NH4+ в обменном состоянии.

Различен и механизм поглощения разных форм азота: аммоний поглощается растениями путем активного транспорта с помощью транспортных белков-переносчиков, поглощение нитратов происходит с помощью электрического потенциала, создаваемого протонами.

Поглощенные нитраты внутри растения восстанавливаются до аммония, поскольку в азотный метаболизм может вовлекаться азот только в виде NH4+. На это дополнительно затрачивается энергия, запасенная в результате процесса фотосинтеза. Таким образом, для растения энергетически «выгоднее» поглощение аммонийного азота. Восстановление нитратов начинается уже в корнях растений (количество зависит от вида растения), но основная их часть восстанавливается в стебле.

Читайте также:  Два прораба в новосибирске

Аммоний, как поглощенный растением из почвенного раствора, так и восстановленный уже внутри самого растения из нитратов, далее связывается с органическими кислотами с образованием аминокислот, часть из которых используется растением для построения белков, а также для синтеза других азотсодержащих соединений, в том числе и хлорофилла.

Разные растения для оптимального роста и развития требуют индивидуального соотношения между аммонийным и нитратным азотом. В общих чертах, растения, предпочитающие кислые почвы, лучше усваивают аммонийный азот, тогда как предпочитающие почвы с высокими значениями рН – нитратный.

Например, для большинства овощных культур количество аммонийного азота не должно превышать 15% общей потребности в азоте (что должно быть учтено особенно при выращивании культур на гидропонике). Для большинства однодольных культур преимущество также имеет нитратный азот.

Баланс между формами азота очень важно соблюдать при выращивании рассады. Так, замечено, что аммонийный азот способствует развитию надземной биомассы, в особенности листьев, тогда как нитратное питание обеспечивает лучший баланс между надземной и подземной частями растения (что важно для последующего приживаемости рассады в поле).

Процесс поглощения аммония требует гораздо больше кислорода, чем поглощение нитрата.

При более высоких температурах дыхание растения увеличивается, быстрее потребляется сахар, делая его менее доступными для метаболизма аммония в корнях. В то же время при высоких температурах растворимость кислорода в воде снижается, что делает его менее доступным.

Поэтому практический вывод состоит в том, что при более высоких температурах рекомендуется применять более низкое соотношение аммоний/нитрат.

При более низких температурах лучше использовать аммонийное питание, потому что кислород и сахара более доступны для корней растений. Кроме того, поскольку перенос нитратов в листья ограничен при низких температурах, то трансформация нитрата будет задерживать рост растения.

Влияние формы азота на рН почвы

Когда растение поглощает аммоний (NH4 +), он выпускает протон (H +) в почвенный раствор. Увеличение концентрации протонов вокруг корней уменьшает значение рН в корневой зоне.

Соответственно, когда растение поглощает нитрат (NO3-), он высвобождает бикарбонат (HCO3-), что увеличивает рН вокруг корней. Из этого мы можем заключить, что поглощение нитрата увеличивает рН вокруг корней, а поглощение аммония уменьшает его.

Это явление особенно важно в почвенных средах, где корни могут легко влиять на рН, поскольку их объем относительно велик по сравнению с объемом среды. Чтобы предотвратить быстрое изменение рН среды, мы должны поддерживать соответствующее соотношение аммоний/нитрат в зависимости от сорта, температуры и стадии роста растения.

Следует отметить, что при определенных условиях рН может реагировать не так, как ожидалось, из-за процесса нитрификации (превращение аммиака в нитрат бактериями в почве). Нитрификация является очень быстрым процессом, и добавленный аммоний может быстро трансформирван и поглощен как нитрат, тем самым увеличивая рН в корневой зоне, а не уменьшая его.

Аммоний – катион (ион положительного заряда), поэтому он конкурирует с другими катионами (калий, кальций, магний) для поглощения корнями. Несбалансированное внесение удобрений со слишком высоким содержанием аммония может привести к дефициту кальция и магния. Однако эта конкуренция не влияет на потребление калия.

Как мы упоминали выше, соотношение аммония/нитрата может изменять рН в корневой зоне, и эти изменения, в свою очередь, могут влиять на растворимость и доступность других питательных веществ.

Выводы

  1. Выбор источника минерального азота не должен делаться категорически в пользу одного из них.
  2. Наилучшие условия для азотного питания растений складываются в присутствии обоих ионов: NO3- и NH4+ (последнего – в количестве 5-25%).
  3. Тем не менее, в течение более холодных сезонов, доля аммонийного азота может быть повышена от 25% до 30%, т.к. поглощение нитрата в это время является относительно неэффективным.
  4. Длительное использование аммонийного азота должно сопровождаться измерениями рН почвы, так как он может привести к снижению рН, особенно на легких песчаных почвах с низким содержанием кальция, который может, в свою очередь, изменить скорость поглощения других питательных веществ.

Форма азота в удобрениях

Совместное применение азотных удобрений различных форм позволяет очень точно рассчитать программу внесения азота для растений.

В удобрениях азот представлен в основном в трех формах: в виде солей аммония, в виде нитратного азота и в виде мочевины. Каждая из форм имеет свои преимущества и свои недостатки, которые должны быть учтены при планировании системы применения удобрений.

Основными преимуществами нитрат-содержащих удобрений по сравнению с аммоний-содержащими можно назвать следующие:

  1. Высокая подвижность нитратного азота в почве создает условия для его эффективного поглощения растениями.
  2. Нет необходимости немедленной заделки нитрат-содержащих удобрений в почву, поскольку нитраты не летучи и легко мигрируют по профилю почвы с током воды.
  3. Нитраты проявляют синергетические свойства по отношению к таким катионам, как K+, Ca2+ и Mg2+ (угнетая при этом поглощение фосфатов), тогда как аммоний конкурирует с ними при поглощении растениями. К слову, это касается не только нитратов, но и других анионов.
Комментировать
66 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector