No Image

Бестрансформаторный блок питания на 3 вольта

СОДЕРЖАНИЕ
607 просмотров
12 декабря 2019

В каждой современной квартире имеется большое количество всевозможных гаджетов, требующих постоянного электрического питания. В основном они работают от различных батареек, с относительно коротким сроком службы. Многие хозяева пытаются подключать эти устройства через обычные сетевые блоки питания на 12 В, но в большинстве случаев это не очень удобно. Основная причина заключается в больших размерах и весе понижающих трансформаторов, которые требуют себе отдельного места. Выйти из положения поможет бестрансформаторный блок питания, изготовленный на основе гасящего конденсатора.

Основным условием его нормальной работы является правильное выполнение всех необходимых расчетов. В этом случае данное устройство обеспечит надежное функционирование аппаратуры в полном автономном режиме.

Общее устройство и принцип действия

Представленная схема отличается простотой, надежностью и эффективностью. Она может быть изготовлена не только методом навесного монтажа, но и в виде печатной платы. Данная схема на двенадцать вольт является рабочей, требуется лишь заранее рассчитать параметры балластового гасящего конденсатора и подобрать нужное значение тока для конкретного устройства. Практически можно сделать 5,5-вольтовый блок с возможностью увеличения напряжения до 25 В.

Основой устройства служит балластовый конденсатор, гасящий сетевое напряжение. После этого ток попадает в диодный выпрямитель, а второй конденсатор выполняет функцию фильтра. Иногда возникает необходимость быстро разрядить оба конденсатора. С этой целью в схеме предусмотрены резисторы R1 и R2. Еще один резистор R3 используется в качестве ограничителя тока при включении нагрузки.

Расчет балластного конденсатора выполняется до сборки схемы. Для этого используется простая формула С = 3200хI/Uc, в которой I является током нагрузки (А), Uc – сетевым напряжением, С – емкостью конденсатора (мкФ). Чаще всего такие расчеты используются для светодиодов.

В качестве примера можно взять любой прибор с током 150 мА. Это может быть обычная светодиодная лампа. Сетевое напряжение будет 230 В. Таким образом, 3200 х 0,15/230 = 2,08 мкФ. Номинал конденсатора выбирается наиболее близко к расчетному, то есть, его емкость составит 2,2 мкФ, а расчетное напряжение – 400 В.

Такой простейший бестрансформаторный блок не имеет гальванической развязки с питающей сетью. В связи с этим должна быть обеспечена надежная изоляция всех соединений, а само устройство – помещено в корпус из диэлектрического материала.

Основные рабочие схемы

В большинстве случаев используются две схемы источников БП. Как правило, каждый из них представляет собой бестрансформаторный блок питания с гасящим конденсатором, который служит основным элементом данных приборов. Теоретически считается, что в цепях переменного тока эти устройства вообще не потребляют мощности. Однако в реальности в конденсаторах возникают определенные потери, что приводит к выделению некоторого количества тепла.

Поэтому все конденсаторы подвергаются предварительной проверке на возможность использования его в блоке питания. Для этого их подключают к электрической сети и отслеживают колебания температуры через некоторый промежуток времени. Если конденсатор заметно разогревается, то его нельзя использовать в качестве конструктивного элемента. Допускается лишь незначительный нагрев, неспособный повлиять на общую работоспособность устройства.

1.

Представленные на рисунках источники питания имеют конденсаторный делитель. На рисунке 1 представлен делитель общего назначения на 5 В, рассчитанный на токовую нагрузку до 0,3 А. На рисунке 2 отображается схема источника бесперебойного питания, который применяется в электронно-механических кварцевых часах.

В первой схеме делитель напряжения включает в себя бумажный конденсатор С1 и два оксидных конденсатора С2 и С3. Оба последних элемента составляют неполярное плечо, расположенное ниже С1. Его общая емкость составляет 100 мкФ. Составные части диодного моста, расположенные слева, выступают в качестве поляризующих диодов, предназначенных для оксидной пары С2 и С3. На схеме указаны номиналы элементов, в соответствии с которыми на выходе ток короткого замыкания будет равен 600 мА, а напряжение на конденсаторе С4 без нагрузки – 27 вольт.

2.

Вторая схема бестрансформаторного блока питания предназначена для замены батареек (1,5В), используемых в качестве источника питания в электронно-механических часах. Напряжение, вырабатываемое блоком питания, составляет 1,4 В при средней токовой нагрузке 1 мА. Напряжение на конденсаторе С3 без нагрузки не превышает 12 В. Оно снимается с делителя, поступает на узел с элементами VD1 и VD2, где и происходит его выпрямление.

В каждом из этих вариантов рекомендуется использовать два дополнительных резистора вспомогательного назначения. Первый элемент с сопротивлением от 300 кОм до 1 мОм подключается параллельно с гасящим конденсатором. С помощью данного резистора ускоряется его разрядка, после того как устройство отключено от сети.

Другой резистор имеет сопротивление от 10 до 50 Ом и считается балластным. Он подключается в разрыв какого-либо сетевого провода последовательно с гасящим конденсатором. Данный резистор ограничивает ток, проходящий через диодный мост при подключении устройства к сети. Оба резистора должны обладать мощностью рассеяния не менее 0,5 Вт, позволяющей предотвратить вероятные поверхностные пробои этих деталей действием высокого напряжения. Балластный резистор снижает нагрузку на стабилитрон, но одновременно наблюдается рост средней мощности, потребляемой самим блоком питания.

Читайте также:  Гараж с вальмовой крышей пристроенный к дому

Расчеты основных параметров

Для того чтобы устройство было работоспособным и надежно функционировало, необходимо выполнить предварительный расчет бестрансформаторного блока питания. С этой целью потребуется рассчитать основные параметры:

  • Емкостное сопротивление. При включении конденсатора в цепь переменного тока, он начинает оказывать влияние на силу тока, протекающего по этой цепи, то есть на определенном этапе он становится сопротивлением. Чем больше емкость конденсатора и частота переменного тока, тем меньше величина емкостного сопротивления и наоборот. Для расчетов используется формула XC = 1 /(2πƒC), где ХС – емкостное сопротивление, f – частота, С – емкость. Ускорить расчеты и получить точные данные поможет онлайн-калькулятор, в который достаточно лишь ввести исходные данные.
  • Сопротивление нагрузки (Rн). Его расчет позволяет выяснить, до какого значения Rн может быть уменьшено, чтобы Напряжение нагрузки стало равным напряжению стабилизации. Когда необходимо изготовить блок питания своими руками, рекомендуется воспользоваться справочной таблицей, поскольку формулы слишком сложные и не дают точных результатов.
  • Напряжение гасящего конденсатора. Этот показатель обычно составляет не менее 400 В, при сетевом напряжении 220 вольт. В некоторых случаях используется более мощный элемент, с номинальным напряжением 500 или 600 В. Для бестрансформаторных блоков подходят не все типы конденсаторов. Например, устройства МБПО, МБГП, МБМ, МБГЦ-1 и МБГЦ-2 не могут работать в цепях переменного тока, в которых амплитудное значение напряжения более 150 В.

Без трансформаторная Концепция Электропитания

Без трансформаторная концепция работает с использованием высоковольтного конденсатора для снижения переменного тока сети до требуемого более низкого уровня, необходимого для подключенной электронной схемы или нагрузки.
Спецификация этого конденсатора выбрана с запасом. Пример конденсатора, который обычно используется в схемах без трансформаторного питания, показан ниже:

Этот конденсатор соединен последовательно с одним из входных сигналов переменного напряжения АС.
Когда сетевой переменный ток входит в этот конденсатор, в зависимости от величины конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает переменный ток сети от превышения заданного уровня, указанным значением конденсатора.

Однако, хотя ток ограничен, напряжение не ограниченно, поэтому, при измерении выпрямленного выхода без трансформаторного источника питания, обнаруживаем, что напряжение равно пиковому значению сети переменного тока , это около 310 В.

Но поскольку ток достаточно понижен конденсатором, это высокое пиковое напряжение стабилизируется с помощью стабилитрона на выходе мостового выпрямителя.

Мощность стабилитрона должна быть выбрана в соответствии с допустимым уровнем тока конденсатора.

Преимущества использования без трансформаторной схемы питания

Дешевизна и при этом эффективность схемы для маломощных устройств.
Без трансформаторная схема питания, описанная здесь, очень эффективно заменяет обычный трансформатор для устройств, мощностью тока ниже 100 мА.

Здесь высоковольтный металлизированный конденсатор использован на входном сигнале для понижения тока сети
Схема показанная выше может быть использована как источник электропитания DC 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеописанной конструкции, стоит остановиться на нескольких серьезных недостатках, которые может включать в себя данная концепция.

Недостатки без трансформаторной схемы питания

Во-первых, цепь неспособна произвести сильнотоковые выходы, что не критично для большинства конструкций.
Другим недостатком, который, безусловно, требует некоторого рассмотрения, является то, что концепция не изолирует цепь от опасных потенциалов сети переменного тока.

Этот недостаток может иметь серьезные последствия для конструкций связанных с металлическими шкафами, но не будет иметь значения для блоков, которые имеют все покрыты в непроводящем корпусе.

И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проникать через нее, что может привести к серьезному повреждению цепи питания и самой схемы питания.

Однако в предложенной простой без трансформаторной схеме питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих ступеней после мостового выпрямителя.

Этот конденсатор основывает мгновенные высоковольтные пульсации, таким образом эффективно защищая связанную электронику с ним.

Как схема работает
1. Когда сетевой вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня, определенного значением реактивного сопротивления C1. Здесь можно примерно предположить, что он составляет около 50 мА.
2. Однако напряжение тока не ограничено, и поэтому 220V может находиться на входном сигнале позволяя достигнуть последующий этап выпрямителя тока .
3. Выпрямитель тока моста выпрямляет 220V к более высокому DC 310V, к пиковому преобразованию формы волны AC.
4. DC 310V быстро уменьшен к низкоуровневому DC стабилитроном, который шунтирует его к значение согласно номинала стабилитрона. Если используется 12V стабилитрон, то и на выходе будет 12 вольт.
5. C2 окончательно фильтрует DC 12V с пульсациями, в относительно чистый DC 12V.

Цепь драйвера показанная ниже управляет лентой менее 100 светодиодов (при входном сигнале 220В), каждый светодиод рассчитан на 20мА, 3.3 В 5мм:

Здесь входной конденсатор 0.33 uF / 400V выдает около 17 ма, что примерно правильно для выбранной светодиодной ленты.
Если драйвер использовать для большего числа подобных светодиодных лент 60/70 параллельно, то просто значение конденсатора пропорционально увеличить для поддержания оптимального освещения светодиодов.

Читайте также:  Дизайн ванной с крашенными стенами и плиткой

Поэтому для 2 лент включенных в параллель требуемое значение будет 0.68 uF/400V, для 3 лент заменить на 1uF / 400V. Аналогично для 4 лент должно быть обновлено до 1.33 uF / 400V, и так далее.

Важно: хотя не показан ограничивающий резистор в схеме, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой светодиодной лентой, для дополнительной безопасности. Можно вставить в любом месте последовательно с отдельными лентами.

ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УПОМЯНУТЫЕ В ЭТОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ДЛЯ ПРИКОСНОВЕНИЯ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ ПЕРЕМЕННОГО ТОКА.

Блог о электронике

Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании. Разве что нишу в стене выдолбить, но это же не наш метод!

Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем. Ну ладно, ближе к теме.

Помните обычный резистивный делитель?

Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к. сопротивления сильно велики. А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот. Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет. А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).

Активное — резистор (R)
Реактивное — конденсатор (Xс) и катушка(XL)
Полное же сопротивление цепи (импенданс) Z=(R 2 +(XL+Xс) 2 ) 1/2

Да, чистые активные и реактивные элементы бывают только в теории. Например, у катушки есть индуктивное сопротивление — витки, активное сопротивление — сопротивление проволки и емкостное сопротивление — паразитные конденсаторы образующиеся между витками катушки.
Даже обычный проводник имеет какую то паразитную емкость и индуктивность.

Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
XL=2pi*f * L
Xc=-1/(2pi*f*C)
Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.

f — частота тока.

Соответственно, на постоянном токе при f=0 и XL катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.

Эта зависимость от частоты также показывает почему в высокочастотных устройствах простые, казалось бы, дорожки печатной платы начинают вести себя как детали — а просто из за возросшей частоты их паразитные значения реактивных сопротивлений возрастают до ощутимых величин.

Получается у нас вот такая вот схема:

Теперь надо что-то сделать с тем, что у нас переменка. Не велика проблема — добавим парочку диодов (можно, конечно, и диодный мост, будет эффективней, но с двумя диодами проще) диоды должны быть на ток около ампера, не меньше. И чтобы обратное напряжение было вольт на 500. 1N4007, например, или похожий по параметрам:

Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.

Читайте также:  Вкусная перловка на молоке

Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:

Но есть тут одна заковыка — у нас напряжение на нагрузке зависит от сопротивления нагрузки. Т.е. если у тебя схема, включенная вместо Rн снизила потребление тока, то соответственно напряжение на ней вырастет. А для всякой нежной электроники это черевато.

Лечится стабилитроном на нужное нам напряжение. Питать мы собираемся микроконтроллер, так что на 5 вольт:

В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.

А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.

Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:

  • F — частота питающей сети. У нас 50гц.
  • С — емкость
  • U — напряжение в розетке
  • Uвых — выходное напряжение

Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.

В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА

Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.

Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:

Еще добавил резюк на 43ом 1Вт, чтобы кондер при втыкании кондер заряжался не так быстро и не было броска тока. На печатке он здоровый такой, возле разьема.

Печатная плата простая и вопросов по ее разводке под другую форму корпуса ни у кого не возникнет. Я же ее тут сделал просто для примера, поэтому не смотрите на ее большие размеры. Я не мельчил:

После чего, как обычно, все вытравил и спаял:

Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.

В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.

Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.

Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.

Поэтому неукоснительно соблюдайте ряд правил:

  • 1. Номиналы надо ставить с запасом на как можно большее напряжение. Особенно это касается конденсатора. У меня стоит на 400вольт, но это тот что был в наличии. Лучше бы вообще вольт на 600, т.к. в электросети иногда бывают выбросы напряжения намного превышающие номинал. Стандартные блоки питания за счет своей инерционности его переживут запросто, а вот конденсатор может и пробить — последствия представьте себе сами. Хорошо если не будет пожара.
  • 2. Эта схема должна быть тщательным образом заизолирована от окружающей среды. Надежный корпус, чтобы ничего не торчало наружу. Если схема монтируется в стену, то она не должна касаться стен. В общем, пакуем все это дело наглухо в пластик, остекловываем и закапываем на глубине 20метров. :)))))
  • 3. При наладке ни в коем случае не лезть руками ни к одному из элементов цепи. Пусть вас не успокаивает что там на выходе 5 вольт. Так как пять вольт там исключительно относительно самой себя. А вот по отношению к окружающей среде там все те же 220.
  • 4. После отключения крайне желательно разрядить гасящий конденсатор. Т.к. в нем остается заряд вольт на 100-200 и если неосторожно сунуться куда нибудь не туда больно цапнет за палец. Вряд ли смертельно, но приятного мало, а от неожиданности можно и бед натворить.
  • 5. Если используется микроконтроллер , то прошивку его делать ТОЛЬКО при полном выключении из сети. Причем выключать надо выдергиванием из розетки. Если этого не сделать, то с вероятностью близкой к 100% будет убит комп. Причем скорей всего весь.
  • 6. То же касается и связи с компом. При таком питании запрещено подключаться через USART, запрещено обьединять земли.

Если все же хотите связь с компом, то используйте потенциально разделенные интерфейсы. Например, радиоканал, инфракрасную передачу, на худой конец разделение RS232 оптронами на две независимые части.

В общем, я настоятельно НЕ РЕКОМЕНДУЮ пользоваться такой схемой включения. И если можно от нее избавиться, то от нее нужно избавиться. Перейдя на традиционные схемы блоков питания с развязкой от сети.

Ну и, как обычно, видеосьемка процесса запуска девайса от розетки через такой вот БП:

Комментировать
607 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector