No Image

Датчик давления расплава принцип работы

СОДЕРЖАНИЕ
256 просмотров
12 декабря 2019

Стандартные, высокотемпературные датчики (трансмиттеры) расплава
PT124B-111/111T | PT124G-111/111T
PT124B-121/121T | PT124G-121/121T

Высокоточные, высокотемпературные датчики (трансмиттеры) расплава
PT124B-112/112T | PT124G-112/112T
PT124B-123/123T | PT124G-123/123T

Экологичные, высокотемпературные датчики/трансмиттеры расплава
PT124B-113/113T | PT124G-113/113T
PT124B-123/123T | PT124G-123/123T

Интеллектуальные, высокотемпературные датчики/трансмиттеры расплава
PT124B-115
PT124B-129/129T

Высокотемпературные датчики/трансмиттеры расплава фланцевого типа
PT124B-116 | PT124G-116 | PT124B-126 | PT124G-126

Взрывобезопасные, высокотемпературные датчики/трансмиттеры давления расплава.
PT124B-125/125T | PT124G-125/125T

Высокотемпературные трансмиттеры давления расплава с полостными мембранами.
PT124B-128 | PT124G-128

Высокотемпературные трансмиттеры давления расплава с автоматической калибровкой «0».
PT124B-112D | PT124В-123D/123DT

Напишите нам, и эксперты компании «СТР» ответят на все Ваши вопросы в области переработки полимеров, закупке сырья и изготовлению вторичных гранул полипропилена.

Принцип работы управляющей системы

3.1.1 Общие сведения

Управляющая система представляет собой автоматическую систему управления рабочими процессами на установке для получения пленки глубокой вытяжки. С устройств измерения, управления и регулирования на установке получают данные, используемые для управления технологическими процессами.

Работа, управление и визуализация всех агрегатов осуществляется с поста управления. Визуализация и ввод технологических параметров производится через подменю на дисплеях управляющей системы.

Автоматизированная система работает на основе заданных значений технологических параметров.

Управление и контроль для всех агрегатов возможны с панели управления. Все агрегаты (приводы, обогреватели) можно включать и выключать через сенсорный дисплей. Задаваемые параметры также можно вводить через окошки ввода на дисплее. Ответная сигнализация производится как через сигнальные лампочки, так и через статусную информацию на дисплее. Дисплей показывает все действительные значения параметров (число оборотов, силу тока и т.п.). Происходящие сбои (предупредительные сигналы и сигналы отключения) сопровождаются звуковым сигналом или миганием на дисплее. Список аварийных сигналов на дисплее показывает все актуальные сбои. Эти сбои протоколируются текстуально в закольцованном буфере. Шунтирования защитных блокировок при выполнении операций протоколируется.

цилиндр экструдер насос зазор

Управляющая система на разных участках технологического цикла

Рис. 2. Узлы управляющей системы на экструзионной линии: 1. Дозатор; 2 Привод экструдера;3. Обогрев экструдера;4. Вакуум-насос;5 атчик давления расплава на экструдере;6. Ситообменник; 7. термодатчик для расплава; 8. Датчик давления расплава на входе насоса для расплава;9. Насос для расплава; 10. Датчик давления расплава на выходе;11. Датчик давления расплава на фильере; 12. Приводы валков; 13. Датчик зазора валков; 14. Гидроагрегат подвода волков; 15. Привод регулировки зазора валков;16. Агрегат термостатирования валков; 17. Привод перестановки каландра по высоте; 18. Привод шасси каландра; 19. Привод тянущего механизма; 20. Пневмоподача; 21. Намотчик/измельчитель обрезаемых кромок (не показан на рис.); 22. Толщиномер; 23. Намотчик

3.2.1 Дозаторный блок

Дозаторный блок включает в себя всасывающий транспортер и многокомпонентный дозатор. Через всасывающий транспортер к многокомпонентному дозатору подаются отдельные компоненты сырья. Автоматическая система управления дозатором должна обеспечивать стабильный состав сырья.

Дозатор регулирует подачу материала в соответствии с числом оборотов на экструдере. В случае неполадок на дозаторном блоке управляющая система должна выдать сообщение об ошибке и включать аварийный сигнал. В случае аварийной остановки дозаторный блок отключается.

3.2.2 Привод экструдера

Привод экструдера приводит во вращение экструдерный шнек через редуктор. Скорость вращения экструдерного шнека должна задаваться через управляющую систему. Скорость вращения экструдера устанавливается контуром регулирования числа оборотов по давлению с учетом данных от насоса для расплава и датчика давления в фильере.

3.2.3 Обогрев экструдера

Обогрев экструдера обеспечивает предварительный прогрев экструдера. Температура устанавливается регулятором раздельно для каждой отдельной зоны. При работе проверяются такие неполадки, как обрыв на датчиках, перемыкание датчиков, срабатывание токовой и тиристорной защиты, а также аварийные отклонения температуры в ту или иную сторону.

3.2.4 Вакуум — насос

Вакуум-насос служит для отсасывания газов, выделяющихся при расплавлении сырьевых материалов в экструдере.

Включение вакуум-насоса производится соответствующим тумблером на панели управления. После подачи команды на включение сначала включается внутренний нагрев в вакуум-насосе. После достижения рабочей температуры насос запускается в работу.

3.2.5 Датчик давления расплава на экструдере

Датчик давления для расплава на экструдере расположен перед ситообменником. При превышении допускаемого предела система должна подавать предупредительный сигнал. Если давление расплава продолжает нарастать, то при превышении пороговой величины экструдер автоматически отключается.

Читайте также:  Дизайн комнаты серые стены

В системе предусмотрен гидравлический ситообменник. Автоматическая система следит за сигналами с датчиков давления находящихся до и после ситообменника (вернее за разностью показаний с этих датчиков). При достижении определенной величины рассогласования система автоматически выдаёт сигнал на смену фильтра.

3.2.7 Термодатчик для расплава

Температура в расплаве измеряется термодатчиком на выходе ситообменника и отображается как дополнительная информация.

3.2.8 Датчик давления расплава на входе насоса для расплава

Датчик давления находится на выходе ситообменника. При превышении допускаемого предела (макс. 80 бар) подается предупредительный сигнал. Если давление в расплаве продолжает нарастать, то при превышении пороговой величины (макс. 100 бар) экструдер и насос для расплава отключаются. Равным образом и при выходе за нижний предел (15 бар) насос для расплава и экструдер по недостатку материала спустя некоторое время отключаются. При нарастании давления выше указанного нижнего предела при пуске насоса для расплава и экструдера система включает контур регулирования давления/оборотов.

3.2.9 Насос для расплава

Посредством насоса для расплава обеспечивается его непрерывная подача и одновременно достигается уменьшение нагрузки на привод экструдера. Скорость привода задается через соответствующие сервисные подменю управляющей системы. Также система должна согласовывать скорости вращения приводов насоса и шнека экструдера, для поддержания оптимального режима работы.

3.2.10. Датчик давления расплава на выходе насоса для расплава (MP3)

Этот датчик давления находится на выходе насоса для расплава. При превышении допускаемого предела подается предупредительный сигнал. Если давление в расплаве продолжает нарастать, то при превышении пороговой величины управляющая система отключает экструдер и насос для расплава.

3.2.11 Датчик давления расплава на фильере (MP4)

Это давление расплава измеряется датчиком давления на фильере. При выхода ниже допускаемого предела подается предупредительный сигнал. Если давление в расплаве продолжает падать, то при опускании его ниже пороговой величины и активированной блокировке валков происходит отвод каландрирующих валков.

3.2.12 Приводы валков

Система задает скорость вращения валков в зависимости от режима работы. Также производится синхронизация работы валков и экструдера, для обеспечения нужного качества выпускаемой продукции.

3.2.13 Датчик зазора валков

Посредством датчика перемещений (через расстояние между осями валков) определяется величина зазора между валками 1 и 2 либо же валками 2 и 3. Непосредственно зазор валков не замеряется.

Система постоянно отслеживает температуру термостатирования, зазор в опорах валков, прогиб осей валков и в зависимости от этого выдаёт сигнал на приводы регулировки зазора валков.

Индикация зазора валков производится на дисплее управляющей системы.

3.2.14 Гидроагрегат подвода валков

Система обеспечивает необходимый уровень давления в гидроагрегате для замыкания зазора валков.

3.2.15 Приводы регулировки зазора валков

Посредством этих приводов переставляются электростопоры для зазора валков. Система отслеживает сигналы поступающие с датчика зазора валков и посредством приводов регулировки обеспечивает прддержание постоянной величины зазора.

3.2.16 Агрегаты термостатирования валков

Автоматическая система должна обеспечивать работу агрегатов термостатирования таким образом, чтобы они поддерживали заданные температуры для того или иного валка каландра. Мощность насосов агрегатов термостатирования регулируется индивидуально.

3.2.17 Привод перестановки каландра по высоте

Перестановка по высоте нужна, чтобы поднять каландр и выставить его в наиболее выгодную для экструзии позицию. Регулировка высоты должна осуществляться через соответствующее меню управляющей системы.

3.2.18 Привод шасси каландра

В случае падения давления на фильере, система должна включать привод шасси и отодвигать каландр из-под фильеры, для предотвращения его порчи.

3.2.19 Привод тянущего механизма

Управляющая система синхронизирует скорость привода тянущего механизма со скоростью работы всей системы, тем самым обеспечивая нужный уровень натяжения плёнки.

3.2.20 Пневмопривод тянущего механизма

Отведение/подведение прижимного валка на тянущем механизме осуществляется пневматически. Система следит и регулирует нужный уровень прижатия валков. Необходимость в этом обуславливается тем, что процесс не допускает проскальзывания плёнки между валками

3.2.21 Намотчик/измельчитель обрезаемых кромок

В измельчителе обрезаемых кромок они наматываются либо измельчаются и непосредственно возвращаются к дозаторному блоку. Скорость работы измельчителя кромок связана с рабочим параметром тянущего механизма. Включение измельчителя производится на самом устройстве либо с помощью управляющей системы.

Читайте также:  Зачистка сварных швов после сварки гост

Измерение толщины проводится для оптимирования профиля пленки. От тянущего механизма поступает синхронизирующий сигнал на управление скоростью считывания.

С помощью намотчика выделанная пленка наматывается на картонные сердечники. Скорость работы намотчика задается синхронизирующим сигналом от тянущего механизма. Управление намотчиком находится непосредственно на нем.

В современной промышленности не обойтись без точных приборов измерения, которые служат для учета расхода различных жидкостей, а также газа, газовых смесей и пара. Помимо расходомеров с разными принципами действия, широко применяются электронные датчики давления. Они являются неотъемлемой частью измерительных комплексов, а также входят в состав теплосчетчиков, используются в системах автоматизированного контроля технологических процессов. Данные приборы востребованы в энергетике, пищевой промышленности, нефтяной и газовых отраслях и других сферах производства.

ЧТО ТАКОЕ ДАТЧИК ДАВЛЕНИЯ

Это устройство для измерения и преобразования давления среды — жидкости, газа или пара. Полученное значение выводится на дисплей или передается в виде аналогового или цифрового выходного сигнала.
Принцип работы зависит от типа измеряемого давления, которое может быть абсолютным, избыточным и дифференциальным.

ТИПЫ ИНТЕЛЛЕКТУАЛЬНЫХ ДАТЧИКОВ ДАВЛЕНИЯ

Так, в пищевом и химическом производстве широкое применение получил интеллектуальный датчик абсолютного давления, осуществляющий измерение относительно абсолютного вакуума. Отметим, что именно такое измерение применяется в узлах учета газа, пара и тепловой энергии для приведения расхода к стандартным условиям.

Решать задачи учета расхода измеряемой среды позволяет датчик дифференциального давления. Принцип его работы заключается в измерении разности давлений между двумя полостями – плюсовой и минусовой. Могут применяться для учета расхода, при помощи сужающих устройств. Сужающее устройство в трубопроводе представляет собой местное сопротивление, при прохождении через которое изменяется характер течения потока. Непосредственно перед сужающим устройством давление среды возрастает, а после него – снижается. Чем больше разница на входе и выходе сужающего устройства, тем больше расход среды, протекающей по трубе.

Кроме того, такой датчик позволяет производить учет объема жидкости не только в трубе, но и в емкости при помощи измерения давления столба жидкости на плюсовую мембрану и, при необходимости, измерения минусовой полостью давления под куполом емкости, для исключения влияния насыщенных паров. Такой метод называют гидростатическим.

В системах автоматического контроля, регулирования и управления технологическими процессами не обойтись без такого прибора, как датчик избыточного давления. Он может использоваться в составе водяных систем теплоснабжения, а также входить в комплектацию узлов коммерческого и технологического учета жидкостей, газа и пара.

ПРЕОБРАЗОВАТЕЛИ ДАВЛЕНИЯ "ЭМИС-БАР"

В конце 2018 года в продуктовой линейке компании «ЭМИС» появились интеллектуальные преобразователи «ЭМИС» — БАР». Они способны осуществлять непрерывное измерение абсолютного, избыточного, дифференциального и гидростатического давления, определять разрежение жидких и газообразных сред, насыщенного и перегретого пара.

Несколько вариантов исполнения позволяет сделать оптимальный выбор, в зависимости от поставленных задач и условий эксплуатации, в том числе при работе на низкотемпературных, высокотемпературных и агрессивных средах.

Стоит отметить, что у заказчика имеется возможность выбора материалов изготовления разделительной мембраны и корпуса электронного блока, типа, материала и размера фланца, типа и материала кронштейна. Также на выбор представлены несколько вариантов длины погружной части разделительной мембраны плюсовой полости.
Остановимся более подробно на технических характеристиках и модификациях.

Устройство прибора

  • 1. Корпус;
  • 2. Крышки корпуса, передняя крышка чаще всего служит экраном дисплея;
  • 3. RFI- и EMI-фильтры– служат для гашения электромагнитных и радиопомех;
  • 4. Электронный блок – модуль процессора;
  • 5. Модуль дисплея – может отсутствовать;
  • 6. Приемник давления – имеет различный внешний вид, в зависимости от типа;
  • 7. Фланцы и метизы – для фланцевого исполнения;
  • 8. Клеммная колодка;
  • 9. Кнопки настройки.

В качестве сенсора используется монокристаллическая кремниевая мембрана с расположенными на ней пьезорезисторами. При этом мембрана, подложка и резистор выполнены из одного материала – кремния. Для защиты сенсора возможно исполнение с разделительной мембраной и заполняющей жидкостью.

Читайте также:  Домокомплект из двойного бруса для самостоятельной сборки

Устройство сенсорного модуля

Сенсорный модуль состоит из:

  • -настройка шкалы измерения с подачей опорного давления;
  • -настройка времени демпфирования;
  • -настройка шкалы измерения без подачи опорного давления;
  • -установка нуля;
  • -установка фиксированного значения тока выходного сигнала;
  • -установка аварийных значений тока;
  • -блокировка управления с кнопок;
  • -функция корнеизвлечения для преобразователей дифференциального давления;
  • -выбор единиц измерения.

Приборы «ЭМИС» — БАР» внесены в Госреестр средств измерения (№2219), имеют сертификат соответствия ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах», всю необходимую разрешительную документацию, а также дополнительные сертификаты:

  • -Сертификат соответствия ТР ТС 032/2013 "О безопасности оборудования, работающего под избыточным давлением".
  • -Декларация о соответствии ТР ТС 032/2013 "О безопасности машин и оборудования".
  • -Декларация о соответствии ТР ТС 020/2011 "Электромагнитная совместимость технических средств".
  • -Сертификат соответствия «Применение в средах, содержащих сероводород».
  • -Экспертное заключение по результатам санитарно-эпидемиологической экспертизы.
  • -Право интеллектуальной собственности разработчика защищено патентом РФ № 186107.

Выпускаются с возможностью фланцевого и штуцерного соединения. На выбор заказчика есть несколько материалов мембраны, полости камеры и корпуса электронного блока, а также типа заполняющей жидкости.

    Имеют несколько вариантов исполнения:

  • -с фланцевым присоединением
  • -со штуцерным присоединением
  • -с открытой мембраной
  • -с выносной разделительной мембраной

Данные спецификации представлены с фланцевым креплением и с выносными разделительными мембранами. Модели 186,187, 188 являются преобразователями разрежения.


Спецификация 163 – с плоской мембраной, 164 – с погружной мембраной. Они применяются для точного определения уровня жидкости в различных емкостях и резервуарах.

Преимущества

Каждый из представленных приборов обладает высокой точностью измерений на уровне лучших мировых образцов. При специальном заказе основная приведенная погрешность составляет 0,04%. Также они отличаются долговременной стабильностью — не более 0,1% в течение 5 лет (или 0,02% в течение года).
Их ключевыми особенностями являются широкий диапазон измерения (от -0,5 до 69 МПа), способность работать в условиях перегрузки до 105 МПа и расширенная самодиагностика.

Имеется возможность настройки (в том числе калибровки нуля) с кнопок непосредственно во взрывоопасной зоне, без нарушения взрывозащиты корпуса, а также обеспечена работа с фирменным программным обеспечением «ЭМИС» — Интегратор». Межповерочный интервал составляет 5 лет.

В 2018 году, в целях проведения ОПИ, преобразователи «ЭМИС-БАР» были поставлены на объект УРМЦ «Газпром – Трансгаз – Екатеринбург». В своем отзыве заказчик отмечает, что за время опытно-промышленных испытаний они показали себя надёжным средством измерения, отвечающим всем техническим требованиям и в полной мере обеспечивающим заявленные метрологические и технико-эксплуатационные параметры. Приборы показали высокую стабильность при различных температурных режимах и в разных погодных условиях, высокую визуализацию, интуитивность и практическое удобство дисплея.

Также положительные характеристики преобразователи ИД «ЭМИС-БАР» получили по результатам работы на «Березниковском содовом заводе», где измеряемой средой стала фильтровая жидкость карбоколонны. «Интерфейс настройки прибора интуитивный и понятный. Материал корпуса соответствует заявленному в паспорте. Несмотря на наличие в фильтровой жидкости агрессивных примесей, отложений и коррозии на сенсоре не было. Метрологические характеристики после 6 месяцев работы соответствуют заявленным. Диапазон напряжения питания может быть от 12 до 36 вольт, при этом влияния на работу прибора данный разбег по питанию не оказывает», — отмечает в отзыве заказчик.

Стоит отметить, что измерители «ЭМИС» — БАР» являются частью комплексов учета энергоносителей и теплосчетчиков. Сейчас комплексы можно приобрести с расширенной гарантией до 3 лет, по Вашему запросу.

На рисунке комплекс учета «ЭМИС»-ЭСКО 2210»

Необходимо добавить, что с появлением в продуктовой линейке «ЭМИС» датчиков давления, для заказчиков открылись возможности унификации применяемого оборудования и получения дополнительных выгод при комплексной покупке средств измерения нашей торговой марки!

Если у Вас существует потребность в приобретении продукции, на нашем сайте Вы можете оставить заявку или заполнить опросный лист и отправить его на адрес sales@emis-kip.ru.

Задать вопрос инженерам по работе производимых приборов

Комментировать
256 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector