No Image

Датчик освещенности arduino подключение

СОДЕРЖАНИЕ
55 просмотров
12 декабря 2019

Датчики освещенности (освещения), построенные на базе фоторезисторов, довольно часто используются в реальных ардуино проектах. Они относительно просты, не дороги, их легко найти и купить в любом интернет-магазине. Фоторезистор ардуино позволяет контролировать уровень освещенности и реагировать на его изменение. В этой статье мы рассмотрим, что такое фоторезистор, как работает датчик освещенности на его основе, как правильно подключить датчик в платам Arduino.

Фоторезистор ардуино и датчик освещенности

Фоторезистор, как следует из названия, имеет прямое отношение к резисторам, которые часто встречаются практически в любых электронных схемах. Основной характеристикой обычного резистора является величина его сопротивления. От него зависят напряжение и ток, с помощью резистора мы выставляем нужные режимы работы других компонентов. Как правило, значение сопротивления у резистора в одних и тех же условиях эксплуатации практически не меняется.

В отличие от обычного резистора, фоторезистор может менять свое сопротивление в зависимости от уровня окружающего освещения. Это означает, что в электронной схеме будут постоянно меняться параметры, в первую очередь нас интересует напряжение, падающее на фоторезисторе. Фиксируя эти изменения напряжения на аналоговых пинах ардуино, мы можем менять логику работы схемы, создавая тем самым адаптирующиеся под вешние условия устройства.

Фоторезисторы достаточно активно применяются в самых разнообразных системах. Самый распространенный вариант применения — фонари уличного освещения. Если на город опускается ночь или стало пасмурно, то огни включаются автоматически. Можно сделать из фоторезистора экономную лампочку для дома, включающуюся не по расписанию, а в зависимости от освещения. На базе датчика освещенности можно сделать даже охранную систему, которая будет срабатывать сразу после того, как закрытый шкаф или сейф открыли и осветили. Как всегда, сфера применения любых датчиков ардуино ограничена лишь нашей фантазией.

Какие фоторезисторы можно купить в интернет-магазинах

Самый популярный и доступный вариант датчика на рынке – это модели массового выпуска китайских компаний, клоны изделий производителя VT. Там не всегда можно разораться, кто и что именно производит тот или иной поставщик, но для начала работы с фоторезисторами вполне подойдет самый простой вариант.

Начинающему ардуинщику можно посоветовать купить готовый фотомодуль, который выглядит вот так:

На этом модуле уже есть все необходимые элементы для простого подключения фоторезистора к плате ардуино. В некоторых модулях реализована схема с компаратором и доступен цифровой выход и подстроечный резистор для управления.

Российскому радиолюбителю можно посоветовать обратить на российский датчик ФР. Встречающиеся в продаже ФР1-3, ФР1-4 и т.п. — выпускались ещё в союзовские времена. Но, несмотря на это, ФР1-3 – более точная деталь. Из этого следует и разница в цене За ФР просят не более 400 рублей. ФР1-3 будет стоить больше тысячи рублей за штуку.

Маркировка фоторезистора

Современная маркировка моделей, выпускаемых в России, довольно простая. Первые две буквы — ФотоРезистор, цифры после чёрточки обозначают номер разработки. ФР -765 — фоторезистор, разработка 765. Обычно маркируется прямо на корпусе детали

У датчика VT в схеме маркировке указаны диапазон сопротивлений. Например:

  • VT83N1 — 12-100кОм (12K – освещенный, 100K – в темноте)
  • VT93N2 — 48-500кОм (48K – освещенный, 100K – в темноте).

Иногда для уточнения информации о моделях продавец предоставляет специальный документ от производителя. Кроме параметров работы там же указывается точность детали. У всех моделей диапазон чувствительности расположен в видимой части спектра. Собирая датчик света нужно понимать, что точность срабатывания — понятие условное. Даже у моделей одного производителя, одной партии, одной закупки отличаться она может на 50% и более.

На заводе детали настраиваются на длину волны от красного до зелёного света. Большинство при этом «видит» и инфракрасное излучение. Особо точные детали могут улавливать даже ультрафиолет.

Достоинства и недостатки датчика

Основным недостатком фоторезисторов является чувствительность к спектру. В зависимости от типа падающего света сопротивление может меняется на несколько порядков. К минусам также относится низкая скорость реакции на изменение освещённости. Если свет мигает — датчик не успевает отреагировать. Если же частота изменения довольно велика — резистор вообще перестанет «видеть», что освещённость меняется.

К плюсам можно отнести простоту и доступность. Прямое изменение сопротивления в зависимости от попадающего на неё света позволяет упростить электрическую схему подключения. Сам фоторезистор очень дешев, входит в состав многочисленных наборов и конструкторов ардуино, поэтому доступен практически любому начинающему ардуинщику.

Читайте также:  Душевые кабины эрлит отзывы покупателей

Подключение фоторезистора к ардуино

В проектах arduino фоторезистор используется как датчик освещения. Получая от него информацию, плата может включать или выключать реле, запускать двигатели, отсылать сообщения. Естественно, при этом мы должны правильно подключить датчик.

Схема подключения датчика освещенности к ардуино довольна проста. Если мы используем фоторезистор, то в схеме подключения датчик реализован как делитель напряжения. Одно плечо меняется от уровня освещённости, второе – подаёт напряжение на аналоговый вход. В микросхеме контроллера это напряжение преобразуется в цифровые данные через АЦП. Т.к. сопротивление датчика при попадании на него света уменьшается, то и значение падающего на нем напряжения будет уменьшаться.

В зависимости от того, в каком плече делителя мы поставили фоторезистор, на аналоговый вход будет подаваться или повышенное или уменьшенное напряжение. В том случае, если одна нога фоторезистора подключена к земле, то максимальное значение напряжения будет соответствовать темноте (сопротивление фоторезистора максимальное, почти все напряжение падает на нем), а минимальное – хорошему освещению (сопротивление близко к нулю, напряжение минимальное). Если мы подключим плечо фоторезистора к питанию, то поведение будет противоположным.

Сам монтаж платы не должен вызывать трудностей. Так как фоторезистор не имеет полярности, подключить можно любой стороной, к плате его можно припаять, подсоединить проводами с помощью монтажной платы или использовать обычные клипсы (крокодилы) для соединения. Источником питания в схеме является сам ардуино. Фоторезистор подсоединяется одной ногой к земле, другая подключается к АЦП платы (в нашем примере – АО). К этой же ноге подключаем резистор 10 кОм. Естественно, подключать фоторезистор можно не только на аналоговый пин A0, но и на любой другой.

Несколько слов относительно дополнительного резистора на 10 К. У него в нашей схеме две функции: ограничивать ток в цепи и формировать нужное напряжение в схеме с делителем. Ограничение тока нужно в ситуации, когда полностью освещенный фоторезистор резко уменьшает свое сопротивление. А формирование напряжения – для предсказуемых значений на аналоговом порту. На самом деле для нормальной работы с нашими фоторезисторами хватит и сопротивления 1К.

Меняя значение резистора мы можем “сдвигать” уровень чувствительности в “темную” и “светлую” сторону. Так, 10 К даст быстрое переключение наступления света. В случае 1К датчик света будет более точно определять высокий уровень освещенности.

Если вы используете готовый модуль датчика света, то подключение будет еще более простым. Соединяем выход модуля VCC с разъемом 5В на плате, GND – c землей. Оставшиеся выводы соединяем с разъемами ардуино.

Если на плате представлен цифровой выход, то отправляем его на цифровые пины. Если аналоговый – то на аналоговые. В первом случае мы получим сигнал срабатывания – превышения уровня освещенности (порог срабатывания может быть настроен с помощью резистора подстройки). С аналоговых же пинов мы сможем получать величину напряжения, пропорциональную реальному уровню освещенности.

Пример скетча датчика освещенности на фоторезисторе

Мы подключили схему с фоторезистором к ардуино, убедились, что все сделали правильно. Теперь осталось запрограммировать контроллер.

Написать скетч для датчика освещенности довольно просто. Нам нужно только снять текущее значение напряжения с того аналогового пина, к которому подключен датчик. Делается это с помощью известной нам всем функции analogRead(). Затем мы можем выполнять какие-то действия, в зависимости от уровня освещенности.

Давайте напишем скетч для датчика освещенности, включающего или выключающего светодиод, подключенный по следующей схеме.

Алгоритм работы таков:

  • Определяем уровень сигнала с аналогового пина.
  • Сравниваем уровень с пороговым значением. Максимально значение будет соответствовать темноте, минимальное – максимальной освещенности. Пороговое значение выберем равное 300.
  • Если уровень меньше порогового – темно, нужно включать светодиод.
  • Иначе – выключаем светодиод.

Прикрывая фоторезистор (руками или светонепроницаемым предметом), можем наблюдать включение и выключение светодиода. Изменяя в коде пороговый параметр, можем заставлять включать/выключать лампочку при разном уровне освещения.

При монтаже постарайтесь расположить фоторезистор и светодиод максимально далеко друг от друга, чтобы на датчик освещенности попадало меньше света от яркого светодиода.

Датчик освещенности и плавное изменение яркости подсветки

Можно модифицировать проект так, чтобы в зависимости от уровня освещенности менялась яркость светодиода. В алгоритм мы добавим следующие изменения:

  • Яркость лампочки будем менять через ШИМ, посылая с помощью analogWrite() на пин со светодиодом значения от 0 до 255.
  • Для преобразования цифрового значения уровня освещения от датчика освещенности (от 0 до 1023) в диапазон ШИМ яркости светодиода (от 0 до 255) будем использовать функцию map().
Читайте также:  Водонагреватель накопительный для чего нужен

В случае другого способа подключения, при котором сигнал с аналогового порта пропорционален степени освещенности, надо будет дополнительно «обратить» значение, вычитая его из максимального:

Схема датчика освещения на фоторезисторе и реле

Примеры скетча для работы с реле приведены в статье, посвященной программированию реле в ардуино. В данном случае, нам не нужно делать сложных телодвижений: после определения «темноты» мы просто включаем реле, подавай на его пин соответствующее значение.

Заключение

Проекты с применением датчика освещенности на базе фоторезистора достаточно просты и эффектны. Вы можете реализовать множество интересных проектов, при этом стоимость оборудования будет не высока. Подключение фоторезистора осуществляется по схеме делителя напряжения с дополнительным сопротивлением. Датчик подключается к аналоговому порту для измерения различных значений уровня освещенности или к цифровому, если нам важен лишь факт наступления темноты. В скетче мы просто считываем данные с аналогового (или цифрового) порта и принимаем решение, как реагировать на изменения. Будем надеяться, что теперь в ваших проектах появятся и такие вот простейшие «глаза».

Простой проект с использованием Ардуино, который автоматически включает свет, когда датчик LDR зафиксировал сумерки. LDR сенсор на английском звучит как Light Dependent resistor, что в переводе означает "светозависимый резистор".

Неправда ли, было бы интересно иметь под рукой устройство, которое включает свет при наступлении сумерок? Цель нашего проекта сделать именно такое устройство.

Всякий раз, когда комната становится темной, лампочка автоматически будет включаться. Вы можете использовать это как систему аварийного освещения. Используйте её, чтобы автоматически включать свет, когда в комнате недостаточно света.

Чтобы обнаружить интенсивность света или темноты, мы используем датчик, называемый LDR (резистор, зависящий от света или светозависимый резистор). LDR — это особый тип резистора, который позволяет пропускать через себя более высокие напряжения (низкое сопротивление), когда есть высокая интенсивность света, и пропускает низкое напряжение (высокое сопротивление), когда слабая интенсивность света. Мы можем воспользоваться этим свойством LDR и использовать его в нашем проекте Ардуино.

Как это работает?

Эта система работает, измеряя интенсивность света в окружающей среде. Датчик, который может использоваться для обнаружения света, является LDR. Он недорогой, и вы можете купить его в любом местном магазине электроники или в Интернете.

LDR выдает аналоговое напряжение при подключении к VCC (5V), которое изменяется по величине прямо пропорционально интенсивности входного света на нем. То есть, чем больше интенсивность света, тем больше будет соответствующее напряжение от LDR. Поскольку LDR выдает аналоговое напряжение, он подключается к выходу аналогового входа на Arduino. Arduino со встроенным АЦП (аналого-цифровым преобразователем) преобразует аналоговое напряжение (от 0-5 В) в цифровое значение в диапазоне от 0 до 1023. Когда в окружающей среде или на ее поверхности достаточно света, преобразованные цифровые значения, считываемые из LDR через Arduino, будут находиться в диапазоне 800-1023.

Кроме того, мы запрограммируем Ардуино на включение реле. Соответственно, реле заставит включиться лампочку при слабой интенсивности света (например, вы покроете датчик LDR полотенцем или чем-то еще), то есть когда цифровые значения считаются в более высоком диапазоне, чем обычно.

Соединение Arduino и LDR датчика

Во-первых, вам необходимо подключить LDR к выходу 0 аналогового входа на Arduino. Для этого вам нужно использовать конфигурацию делителя напряжения. Схема подключения для Arduino приведена ниже.

Одна нога LDR соединена с VCC (5V) на Arduino, а другая с аналоговым выводом 0 на Arduino. Резистор 100K также подключен к одной и той же ноге и заземлен.

Тестирование кода для датчика Arduino LDR

После подключения LDR к Arduino вы можете проверить значения, поступающие из LDR через Arduino. Для этого подключите Arduino через USB к компьютеру и откройте программное обеспечение Arduino IDE. Затем вставьте этот код и загрузите его в Arduino:

Читайте также:  Gsm модуль для умного дома

После загрузки кода нажмите кнопку на Arduino IDE под названием «Последовательный монитор» (Serial Monitor). Это откроет новое окно, которое печатает на экране различные значения. Теперь, проверьте датчик, закрыв его поверхность от света и посмотрите, какие значения показывает серийный монитор. Вот как выглядит последовательный монитор:

Подключение реле к Arduino

Реле представляет собой электромеханический выключатель. Он может использоваться для включения / выключения устройства в режиме AC / DC. Когда Arduino подает на реле высокое напряжение (5 В), он включает его (переключатель включен), в противном случае он остается выключенным.

В этом проекте мы использовали реле 5D SPDT (single pole double throw — один полюс, два направления). Одна клемма катушки реле соединена с цифровым выводом 2 Arduino, а другая с землей GND. Мы также подключили лампочку. Поскольку мы имеем дело с напряжением переменного тока большой мощности, обязательно соблюдайте надлежащие меры предосторожности. Общая схема показана ниже:

Скетч для Ардиуно

После подключения Ардуино, как показано выше, нам нужно проверить его, загрузив финальный код. Окончательный эскиз ниже:

В этом коде мы устанавливаем пороговое значение света как 700, но оно может меняться под ваши проекты. Вам нужно будет узнать, какое значение должно включить лампочку. Это необходимо сделать после тестирования эмпирически. Таким образом, Arduino включает лампочку (через реле), когда интенсивность света падает ниже 700. Когда она выше 700, она выключает лампочку.

В этой статье мы расскажем о датчике освещенности Ардуино, где разберем его виды, методы подключения и программирования. Но начать все-таки стоит с того, для чего он может пригодиться. В первую очередь, эти комплектующие используются в сигнализации. Такой тип сенсоров чувствует изменения внешнего фона и на основе различных физических эффектов. Сразу сообщим, что их можно разделить на два вида: датчик присутствия и движения. Первый вариант очень чувствительный и способен различать даже мелкие перемещения в своей рабочей зоне (движения пальцев, взмах головы и т.д.). Второй же более грубый, реагирует на более серьезные изменения в пространстве. Данные различия очень полезны, когда требуется решить разные задачи, например при создании умного дома или smart device. Подобные устройства довольно сильно распространены (хоть и дороговаты) и входят в комплект любой домашней сигнализационной системы, но в их основе лежит именно то, о чем мы будем говорить далее.

Рассматриваемую электронику можно разбить на 2 подвида по способу ее реализации, а именно на ИК сенсор и фоторезистор. Во втором случае используется светочувствительный элемент, который меняет свое сопротивление при изменении интенсивности светового фона.

Первый — основан на тепловом излучении объектов, что подразумевает функционирование даже в темноте. Это делает их крайне востребованными. Принцип работы ИК датчика освещенности основан на пирочувствительном элементе. Не будем подробно расписывать этот физический принцип, скажем лишь то, что при попадании на него инфракрасного излучения создается разность потенциалов, которую можно использовать в качестве информации.

Методика подключения датчиков освещенности к Ардуино одинакова для всех типов. Они производятся с 4 ножками: GND, 5V — питание, А0 -аналоговый выход, D0 — цифровой. По двум последним как раз и передается нужная для нас информация. A0 дает возможность оценить интенсивность света в пределах от 0 до 1000, а D0 — 0 или 1, то есть может показать только наличие светового фона. Естественно, мы покажем, как работать именно с 1 вариантом, так как он более информативен.

Заметим, что аналогичное приспособление с фоторезистором тоже имеет 4 пина и механизм сборки электрической цепи и программирование будет таким же. Бывает, что у обоих видов сенсоров только 3 контакта — это означает отсутствие одного из A0 или D0, поэтому будьте внимательны при заказе.

За образец возьмем ИК Light Sensor TCRT5000 и подключим его к плате управления.

Отметим, что мы взяли активный прибор: оно имеет излучатель и приемник. Сначала изучим простую задачку, где научимся управлять сенсором и извлекать из него данные. Сборка скетча в RobotON Studio:

Здесь мы присваиваем переменной показания с устройства и выводим их на экран каждую секунду. Приведем код, который составила наша графическая среда (здесь подключены лишние библиотеки, не обращайте внимания):

Комментировать
55 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector