No Image

Дифференциальная защита трансформатора схема

СОДЕРЖАНИЕ
197 просмотров
12 декабря 2019

Продольная дифференциальная защита является основной быстродействующей защитой мощных трансформаторов и автотрансформаторов от внутренних повреждений (от междуфазных к.з., замыканий на землю и от витковых замыканий).

Для выполнения диф.защиты трансформатора устанавливаются трансформаторы тока со стороны всех его обмоток. Вторичные обмотки трансформаторов тока соединяются в дифференциальную схему и параллельно к ним подключается реле защиты. Аналогично выполняется диф. защита автотрансформатора.

Принцип действия диф. защиты трансформатора показан на рис. 8-1.

Рис.8-1. Принцип действия диф. защиты трансформатора

а) токораспределение при сквозном к.з.

б) токораспределение при к.з. в трансформаторе

Принцип действия дифференциальной защиты трансформаторов, так же как и диф. защиты линий и генераторов, основан на сравнении величины и направления (фазы) токов по концам защищаемого элемента (трансформатора).

При рассмотрении принципа действия диф. защиты условно принимается: коэффициент трансформации силового трансформатора равен единице, соединение обмоток одинаковое и одинаковые трансформаторы тока с обеих сторон.

Если схема токовых цепей диф. защиты выполнена правильно и трансформаторы тока имеют совпадающие характеристики, то при прохождении через защищаемый трансформатор сквозного тока внешнего к.з. или тока нагрузки ток в реле диф. защиты трансформатора будет отсутствовать:

Практически из-за несовпадения характеристик трансформаторов тока вторичные токи не равны I1I2 и в реле протекает ток небаланса:

Для того чтобы защита не действовала от тока небаланса, её ток срабатывания выбирается по условию: Iс.з.>Iнб.

При к.з. в трансформаторе или любом другом месте между трансформаторами тока (в зоне действия диф.защиты) направление тока I2 изменится на противоположное и ток в реле станет равным:

Под влиянием этого тока защита срабатывает и производит отключение поврежденного трансформатора от источников питания.

Особенности выполнения диф. защит трансформаторов

При выполнении диф.защит трансформаторов и автотрансформаторов необходимо учитывать следующее:

Первичные токи обмоток трансформатора не равны по величине.

Соотношение токов определяется коэффициентом трансформации силового трансформатора: , поэтому ток III на стороне НН трансформатора в режимах нагрузки и внешнего к.з. всегда больше тока II на стороне ВН: III>II.

В трансформаторах с соединением обмоток «звезда-треугольник» (/) и «треугольник-звезда» (/) первичные токи обмоток трансформатора различаются не только по величине, но и по фазе.

В трансформаторах с соединением обмоток «звезда-звезда» токи или совпадают по фазе, или сдвинуты на 180 .

Векторная диаграмма первичных и вторичных токов представлена на рис. 8-2.

Рис. 8-2. Векторная диаграмма первичных и вторичных токов

а) при соединении обмоток /

б) при соединении обмоток / 

При наиболее распространенной 11-ой группе соединения обмоток силового трансформатора линейный ток на стороне «треугольника» опережает линейный ток со стороны «звезды» на 30 .

Таким образом, чтобы поступающие в реле диф. защиты трансформатора токи были равны, необходимо применять специальные меры по выравниванию вторичных токов трансформаторов тока как по величине так и по фазе.

Выравнивание величин вторичных токов в плечах диф.защиты выполняется подбором соответствующих коэффициентов трансформаторов тока диф. защиты или применением специальных трансформаторов (автотрансформаторов) компенсирующих различие во вторичных токах трансформаторов тока (рис. 8-3). Уравнительные обмотки диф. реле.

Рис. 8-3. Выравнивание вторичных токов в схеме диф. защиты трансформатора

а) с помощью промежуточного автотрансформатора АТ

б) с помощью промежуточного трансформатора ТК

Для компенсации сдвига фаз токов силовых трансформаторов, соединенных по схеме / или /, необходимо трансформаторы тока на стороне «звезды» силового трансформатора соединять в «треугольник», а на стороне «треугольника» силового трансформатора – «в звезду» (рис. 8-4).

Рис. 8-4. Компенсация углового сдвига токов в схеме диф.защиты

трансформатора с соединением обмоток «звезда-треугольник»

(Как правило, вторичные обмотки со стороны «звезды» обмотки ВН силового трансформатора соединяются в такой же «треугольник» как и обмотка НН силового трансформатора, а вторичные обмотки ТТ со стороны «треугольника» обмотки НН силового трансформатора, соединяются в такую же «звезду», как и обмотка ВН силового трансформатора).

Токи небаланса в дифференциальных защитах трансформаторов

Таки небаланса в диф. защитах трансформаторов определяются большим числом факторов, чем в защитах генераторов и имеют повышенные значения.

Во-первых, трансформаторы тока диф. защиты трансформаторов устанавливаются на сторонах силового трансформатора, имеющих различные напряжения, поэтому они отличаются друг от друга по типам, нагрузкам и кратностям токов внешнего к.з. Всё это обуславливает наличие разных погрешностей у разных групп ТТ, что приводит к появлению повышенных токов небаланса в дифференциальной цепи защиты при внешних к.з.

Читайте также:  Гидрораспределитель с плавающим положением для минитрактора

Во-вторых, при регулировании коэффициента трансформации силового трансформатора соотношения между первичными, а следовательно, и между вторичными токами ТТ, установленных в разных плечах диф. защиты, изменяется, что также приводит к появлению тока небаланса в диф. защите .

Кроме того, диф. защиту трансформатора необходимо отстраивать от броска тока намагничивания который появляется при включении трансформатора под напряжение, а также при восстановлении напряжения на нём после отключения внешнего к.з.

В нормальном режиме (силовой трансформатор под напряжением) ток намагничивания имеет незначительную величину: Iнам=(0,020,03)Iт.ном.

В режимах включения силового трансформатора под напряжение и после отключения внешнего к.з. бросок тока намагничивания (значительно превышает номинальный ток трансформатора): Iбр.нам=(67)Iт.ном.

Резкое возрастание тока намагничивание объясняется насыщением магнитопровода силового трансформатора. Характер изменения тока намагничивания во времени показан на рис. 8-5,а.

Рис. 8-5. Характер изменения намагничивающего тока (а) и магнитные потоки в сердечнике трансформатора при включении его под напряжение (б).

При включении силового трансформатора под напряжение возникает переходной процесс, сопровождающийся появлением двух магнитных потоков (рис. 8-5, б), установившегося ФУ и свободного затухающего апериодического ФСВ. Результирующий магнитный поток ФТУСВ в момент включения ФТО=0 и поэтому ФСВО=-ФУО. Во втором полупериоде знаки обоих потоков совпадают и результирующий поток достигает максимальной величины ФТ.мак.

Наибольшее значение ФТ макс и следовательно Iбр.нам имеет место при включении трансформатора в момент когда мгновенное значение напряжения на трансформаторе равно нулю. В этом случае магнитный поток ФТ в сердечнике трансформатора в начальный момент содержит большую апериодическую составляющую ФСВО и превышает при переходном процессе установившееся значение ФУСТ в 2 раза. Зависимость Ф=f (Iнам) нелинейна и поэтому ток намагничивания увеличивается по отношению к установившемуся значению в сотни раз. Бросок тока намагничивания, как правило, имеет большую апериодическую слагающую и значительный процент высших гармоник. В результате кривая Iнам может оказаться смещённой в одну сторону от оси времени.

В общем случае суммарный расчётный ток небаланса имеет несколько слагающих:

Ток Iнб.ТТ определяется наличием неодинаковых токов намагничивания у ТТ (наличием погрешностей ТТ) и вычисляется по формуле:

коэффициент апериодичности, для реле с БНТ принимаемый равным 1, а для реле тока РТ-40 – 0,5

коэффициент однотипности ТТ равный 0,51. (При существенном различии погрешности ТТ Кодн достигает максимального значения Кодн=1)

погрешность ТТ, удовлетворяющая 10%-ной кратности

наибольший ток сквозного к.з.

Ток Iнб.рег появляется при изменении (регулировании) коэффициента трансформации N силового трансформатора и вычисляется по формуле:

Ток Iнб.нам представляет собой ток намагничивания защищаемого силового трансформатора, который может достигать значений намного больших Iном трансформатора в виде броска тока намагничивания при включении трансформатора под напряжение.

Полный ток небаланса будет равен:

Для предотвращения работы диф. защиты от токов небаланса ток срабатывания защиты выбирают из условия:

Очевидно, что для повышения чувствительности диф. защиты необходимо принимать меры по снижению величины тока небаланса.

Для уменьшения составляющей Iнб.ТТ тока небаланса коэффициенты трансформации ТТ подбирают так, чтобы обеспечивались равные токи в плечах диф. защиты.

Кроме того, ТТ выбирают по кривым предельной кратности так, чтобы их погрешность не превышала 10%.

Для отстройки диф. защиты от токов небаланса при внешних к.з. и от бросков тока намагничивания применяют специальные диф. реле с БНТ (реле типа РНТ) и диф. реле с торможением (реле типа ДЗТ).

Схемы дифференциальных защит трансформатора

На практике применяют схемы диф. защиты различной сложности и с использованием разных способов отстройки от внешних к.з. и от бросков намагничивающих токов.

В простейшем случае в защите используют обычные реле тока (типа РТ-40) без замедления. Такую защиту называют дифференциальной отсечкой. Принципиальная схема диф. отсечки 2-х обмоточного трансформатора приведена на рис. 8-6.

Рис. 8-6. Принципиальная схема дифференциальной отсечки 2-х обмоточного трансформатора.

Ток срабатывания диф. отсечки отстраивается от броска намагничивающего тока:

номинальный ток трансформатора

Для облегчения отстройки Iс.з. от броска намагничивающего тока, который быстро затухает, в схеме диф. отсечки устанавливают промежуточное реле с временем действия 0,040,06с.

Читайте также:  Выполнение рисунка путем процарапывания

При условии выбора ТТ диф. отсечки по кривым предельной кратности (полная погрешность ТТ не должна превышать 10%), отстройка тока срабатывания от броска тока намагничивания обеспечивает отстройку защиты и от токов небаланса при внешних к.з.

Основным достоинством диф. отсечки является простота схемы и быстродействие. Недостатком является большой ток срабатывания, вследствие чего защита оказывается, в ряде случаев нечувствительна (например, к витковым замыканиям).

При использовании диф. отсечки в качестве основной защиты от внутренних повреждений в трансформаторе, коэффициент чувствительности должен быть: Кч2.

Упрощённая схема диф. отсечки (рис. 8-6) выполняется в 2-х фазном исполнении (на стороне треугольника силового трансформатора устанавливаются ТТ в 2-х фазах «А» и «С» и на двух реле тока). Упрощённая схема не действует при двойных замыканиях на землю на стороне НН силового трансформатора в тех случаях, когда земля в трансформаторе возникает на фазе, не имеющей ТТ (на фазе «В»). Это повреждение должно отключаться другими защитами трансформатора (например, МТЗ).

Диф. отсечка из-за недостаточной её чувствительности применяется на трансформаторах малой мощности (до 25 МВА).

На трансформаторах средней и большой мощности (25 МВА и более) применяют трехфазные схемы продольных дифференциальных защит с использованием диф. реле типа РНТ и реле с торможением типа ДЗТ.

Принципиальная схема диф. защиты двухобмоточного трансформатора с использованием БНТ приведена на рис. 8-7.

Наличие быстронасыщающихся трансформаторов (TLA на рис. 8‑7) позволяет эффективно отстраиваться от бросков намагничивающего тока и токов небаланса при внешних к.з. (БНТ практически запирает защиту при наличии аредиодической составляющей в токе дифференциальной цепи – в реле КА-1КА3. Поэтому отстройка диф. защиты может осуществляться от установившегося значения периодической составляющей тока небаланса, что значительно повышает чувствительность защиты.

При существенной разнице между токами в плечах диф. защиты используются выравнивающие (уравнительные) обмотки TLA.

Дифференциальная защита применяется в качестве основной защиты трансформаторов при повреждениях их обмоток, на вводах и ошиновке. Ввиду ее сравнительной сложности дифференциальная защита устанавливается лишь на одиночно работающих трансформаторах 6300 кВА и выше, на параллельно работающих трансформаторах мощностью 4000 кВА и выше и на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не обеспечивает защитное действие, а максимальная токовая защита имеет выдержку времени более 1 с.

Дифференциальная защита основана на принципе сравнения величин токов в начале и в конце защищаемого участка, например и начале и конце обмоток силового трансформатора, генератора и т. п. В частности, участок между трансформаторами тока, установленными на высшей и низшей сторонах силового трансформатора, считается защищаемой зоной.

Действие дифференциальной защиты поясняется рис.1. С обеих сторон трансформатора устанавливаются трансформаторы тока TT1 и ТТ2, вторичные обмотки которых включены последовательно. Параллельно им подключается токовое реле Т. Если характеристики трансформаторов тока будут одинаковы, то в нормальном режиме, а также при внешнем коротком замыкании токи во вторичных обмотках трансформаторов тока будут равны, разность их будет равна нулю, ток через обмотку токового реле Т протекать не будет, следовательно, защита действовать не будет.

При коротком замыкании в трансформаторе и в любой точке защищаемой зоны, например в обмотке трансформатора, по обмотке реле Т будет протекать ток, и если его величина будет равна току срабатывания реле или больше его, то реле сработает и через соответствующие вспомогательные приборы произведет двустороннее отключение поврежденного участка. Эта система будет действовать при междуфазных и межвитковых замыканиях.

Рис. 1. Дифференциальная защита трансформатора: а — токораспределение при нормальном режиме, б — то же при коротком замыкании в трансформаторе

Дифференциальная защита обладает высокой чувствительностью и является быстродействующей, так как для нее не требуется выдержки времени, она может выполняться с мгновенным действием, что и является ее главным положительным свойством. Однако она не обеспечивает защиты при внешних коротких замыканиях и может вызывать ложные отключения при обрыве в соединительных проводах вторичной цепи.

Рис. 2. Дифференциальная защита двух параллельно работающих трансформаторов

Наиболее совершенный способом защиты трансформаторов из всех, на настоящее время известных, является релейная защита, построенная на дифференциальном принципе.

Для дифференциальной защиты характерна избирательность действия или селективность. Это означает срабатывание защиты в районе электроустановки между трансформаторами тока, на вводе высшего напряжения, до силового трансформатора и на вводе отходящей линии низшего напряжения, после силового трансформатора

Читайте также:  Декоративная фактурная штукатурка видео

К плюсам можно отнести небольшую величину тока срабатывания. Для трансформаторов, которые имеют мощность от 63мВА, ток входит в границы 0,1–0,3А от номинального тока, такая величина тока срабатывания обеспечивает коэффициент чувствительности 1,5 –2,0 к витковым и межкатушечным замыканиям в переплетенных и обычных обмотках. Время срабатывания защиты очень короткое (15–20мс). Высокая степень чувствительности и очень короткое время реагирования дифзащиты, способствует уменьшению величины повреждения и сокращает время на восстановление оборудования.

Продольная дифференциальная защита устанавливается в обязательном порядке для трансформаторов мощностью от 6300кВа, она служит для предупреждения выхода из строя оборудования, вследствие многофазных замыканий внутри обмоток и на выводах.

Дифференциальная защита трансформаторов обязательна к установке и для параллельно работающих трансформаторов мощностью от 4000кВа. Трансформаторы небольшой мощности на 1000кВа, комплектуются дифзащитой, при отсутствии газовой защиты, и в том случае если МТЗ рассчитана на большую выдержку времени от 0,5сек, а токовая отсечка имеет низкую степень чувствительности.

Дифференциальная продольная защита с циркулирующими токами, отключает силовой трансформатор, мгновенно после неисправности, без выдержки времени.

Дифференциальная защита – принцип действия

Рис №1. Схема, поясняющая принцип действия дифференциальной защиты трансформатора, с двусторонним питанием, а) при КЗ снаружи трансформатора, на его выводах, б) при внутреннем КЗ трансформатора

Принцип действия дифференциальной защиты построен на применении первого закона Киргофа. Защищаемый объект принимается за узел, ток фиксируется полностью на всех ветвях, соединяющих объект с внешней электрической сетью.

При повреждении на отходящей ветви, сумма токов, входящих и отходящих из узла, равна нулю.

При повреждении объекта, в случае КЗ, сумма токов в ветвях будет равна токам короткого замыкания.

Диффзащита трансформатора отличается от дифференциальной защиты высоковольтных линий и генераторов наличием неравенства первичных токов разных обмоток трансформаторов и несовпадением по фазе.

Поперечная дифференциальная защита линий электропередач

Защита построена идентично продольной и основана на принципе сравнивания токов, только для защиты ВЛ и КЛ, установка трансформаторов тока выполняется на разных линиях, питание, которых осуществляется от одного источника, например, от одного выключателя нагрузки, а не на концах участка линии. Трансформаторы тока должны быть идентичны по своим параметрам, их коэффициент трансформации должен быть одинаков.

Рис №2. Поперечная дифференциальная токовая защита параллельно расположенных высоковольтных линий, а) схема токовых цепей, б) цепи напряжения, г; д) – схема цепей постоянного тока.

После отключения одной из линий, блок-контактами высоковольтных выключателей, дифференциальная защита выводится из работы, это происходит для того, чтобы осуществить устранение неселективности действия при внешнем КЗ.

Принцип действия поперечной дифференциальной защиты, позволяет обходиться без настройки защиты на замедление действия, значит, при КЗ линии, произойдет мгновенное отключение, при КЗ в противоположных концах линии наблюдается каскадное (поочередное) действие дифференциальной защиты.

Рис№3. Каскадное срабатывание дифференциальной защиты: а) КЗ в начале ВЛ; б) КЗ в конце ВЛ

Основные условия выбора тока срабатывания:

  1. При внешних КЗ, не должно происходить срабатывание защиты от максимально высокого тока небаланса.
  2. При отключении одной из подключенных параллельно линий электропередач, если вторая линия полностью, на 100% загружена, не должна осуществляться работа защиты.
  3. Чувствительность защиты зависит от КЗ на границе каскадного действия рядом с точкой равной чувствительности, в которой наблюдается равенство токов в реле комплектов защит обеих линий.

Дифференциальная защита генераторов

Защита генераторов, в статоре машины, действует на погашение магнитного поля генератора (отключением автомата АГП), с его последующим отключением от питающей сети, при помощи выключателя нагрузки самого генератора или выключателя на стороне блока ВН.

Существует 2 типа дифференциальной защиты генераторов:

  1. Продольная дифференциальная защита
  2. Поперечная дифференциальная защита.

Принцип действия дифференциальной защиты генераторов идентичен принципу действия дифференциальной защиты трансформаторов и линий. Основывается на разности токов, текущих в параллельно подключенных ветвях.

Реле включается в цепь с трансформатором тока, в перемычку между нейтралями параллельных обмоток статора.

Рис №4. Принцип действия поперечной дифференциальной защиты генератора

Рис №5. Продольная дифференциальная защита генератора

Принцип действия построен на сравнивании токов следующих со стороны выводов генератора.

Зона действия защиты распространяется на: обмотки генератора, выводы обмотки статора и на шины, вплоть до распределительного устройства.

Комментировать
197 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector