No Image

Диод шоттки с малым падением напряжения

СОДЕРЖАНИЕ
703 просмотров
12 декабря 2019

Обозначение, применение и параметры диодов Шоттки

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной "фишкой" диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.

Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два "дохлых" состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

Читайте также:  Вентилируемый фасад из металлических панелей

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор "подёргивается" и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.

Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

Сложнее проверить диод с подозрением на "утечку". Если проводить проверку мультиметром DT-830 в режиме "диод", то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе "20кОм" обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

Обозначение, применение и параметры диодов Шоттки

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной "фишкой" диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.

Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

Читайте также:  Для каких электроустановок предназначены однополюсные указатели напряжения

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два "дохлых" состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор "подёргивается" и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.

Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

Сложнее проверить диод с подозрением на "утечку". Если проводить проверку мультиметром DT-830 в режиме "диод", то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе "20кОм" обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

Диоды на основе перехода «металл-полупроводник», описанные теоретически Вальтером Шоттки в 1930-е годы, сегодня применяют там, где необходимы их эффективные электрические параметры, такие как малое падение напряжения на переходе (VF) и быстрое переключение (tRR).

Но за эти преимущества приходится платить. Основной недостаток диодов Шоттки связан с относительно высоким током утечки. Ток утечки, обозначаемый в иностранных источниках как ‘IR’ (ток в обратном направлении), обычно измеряется в микроамперах (10 -6 А) для небольших диодов Шоттки и может достигать нескольких миллиампер (10 -3 А) для более мощных диодов. По сравнению с диодами Шоттки у обладающих малой утечкой диодов с p-n переходом («полупроводник – полупроводник») этот параметр находится в диапазоне наноампер (10 -9 А), а более мощные диоды имеют ток утечки в несколько микроампер.

Читайте также:  Воздуходув садовый пылесос электрический greenworks 2800w gbv2800

В устройствах с батарейным питанием, таких как смартфоны, планшеты и смарт-часы, этот недостаток диодов Шоттки сокращает срок работы от аккумуляторной батареи. Для решения проблемы использовались транзисторы на основе эффекта Шоттки – с таким же низким прямым напряжением на переходе, но с меньшим током утечки. В отдельных случаях такой подход был успешным, но приходилось жертвовать другим важным параметром диодов Шоттки – быстрым временем переключения. Возникали дополнительные сложности и в процессе изготовления приборов, так как нужно было использовать более сложные технологии КМОП.

Можно ли сказать, что настало время попрощаться с диодом Шоттки?

Скорее всего, нет! ON Semiconductor продолжает финансировать исследования диодов Шоттки и уже имеет пригодные для массового производства полупроводниковые приборы малой мощности с использованием технологии Trench, которые найдут применение в ограниченных по энергоресурсам устройствах. С учётом того, что диоды типа Schottky Trench уже широко используются в энергоемких устройствах промышленного назначения, ON Semiconductor расширяет возможности этой технологии и для области малых энергий, выпуская усовершенствованные диоды Шоттки для светодиодного освещения, систем батарейного электропитания и беспроводной зарядки.

Новое семейство диодов небольшой мощности с использованием технологии Trench обладает небольшими VF и tRR (как у диодов Шоттки) и обеспечивает низкий ток утечки, который сопоставим с током утечки обычных диодов, близких по быстродействию к диодам Шоттки. Отличительный признак диодов малой мощности Schottky Trench – сочетание низких VF и IR, необходимое для оптимизации рассеиваемой мощности в энергочувствительных приборах. Эта технология позволяет инженерам использовать ее преимущества в ограниченных по энергоресурсам приложениях; например,в беспроводных зарядных устройствах.

Рис. 1. Мост на диодах Шоттки в беспроводном зарядном устройстве

Так как энергия, переданная беспроводным способом в приемный блок питания (RPU), относительно невелика, все дальнейшие потери в цепях преобразования энергии должны быть сведены к минимуму для того, чтобы максимально ускорить процесс зарядки. Важным элементом в этой цепочке является мостовой выпрямитель, который преобразует сигнал переменного тока в электрический сигнал постоянного тока (DC). Затем он обрабатывается с помощью преобразователя постоянного тока (DC/DC), чтобы привести напряжение к уровню, необходимому для зарядки аккумулятора беспроводного устройства. Таким образом, мостовой выпрямитель должен иметь минимальное влияние на потерю мощности: потери прямого напряжения и тока должны быть сведены к минимуму, так как они снижают ценную мощность, передаваемую блоком Power Transmitting Unit (PTU).

Рис. 2. Влияние VF и IR на общую эффективность полного моста

В качестве примера рассмотрим положительную полуволну на катушке приемной антенны. Падение напряжения на диоде D1 уменьшит амплитуду напряжения волны (Vwave); в результате, мы имеем эффективное напряжение (Vres= Vwave-VF), которое затем подается на преобразователь постоянного тока DC/DC. Однако, принятая полуволна тока (Iwave) будет урезанной, в основном, из-за тока утечки диода D4 (IR4) и частично за счет тока утечки диода D2.

Следовательно, полезный результирующий ток приемной цепи Ires=Iwave – (IR2+IR4). Выполненные с использованием технологии Trench, новые диоды Шоттки оптимизированы для этого случая таким образом, что прямое падение напряжения (VF) и потери за счет обратного тока (IR) обеспечивают минимальные потери по мощности.

Почему это имеет существенное значение?

Представим себе диод Шоттки с отличным VF = 0,2 В, но с IR = 3 мА. В выпрямительном мосте оптимальное прямое падение напряжения мало что изменит, если выпрямленный импульс будет буквально съеден токами утечки в обратном направлении (IR) у других диодов. И, наоборот, при очень небольшом токе утечки в 1 нА (как у диодов с p-n переходом) прямое падение напряжения может достигать 0,8 В. Слишком большие потери напряжения во входных цепях затрудняют его дальнейшее повышение с помощью преобразователя DC/DC. Поэтому необходимо соблюдать баланс между IR и VF так, чтобы минимизировать потери мощности и приблизить напряжение сигнала как можно ближе к значению на приемной катушке. Компания ON Semiconductor направила инвестиции в НИОКР с целью оптимизации потерь электроэнергии в новом семействе диодов Шоттки малой мощности, выполненных с использованием технологии Trench.

Описанные преимущества не связаны с более сложным процессом обработки, который, в свою очередь, может снизить надежность приборов. Вместо этого команда исследователей ON Semiconductor сосредоточилась на упрощении производственного процесса при сохранении высоких требований к качеству и надежности, что позволит использовать продукцию, например, в автоиндустрии. Первая серия новых диодов Schottky Trench малой мощности уже выпускается (NSR05T).

В разработке находится следующее усовершенствованное поколение диодов Schottky Trench с крайне низкой потерей мощности за счет оптимизации значений VF и IR.

Комментировать
703 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector