No Image

Для чего нужен трехфазный трансформатор

СОДЕРЖАНИЕ
320 просмотров
12 декабря 2019

Трёхфазный трансформатор используется для преобразования напряжения. Применяется устройство в сфере электрификации промышленного хозяйства и бытовых нужд. Кроме того, такие устройства незаменимы на судах, так как с их помощью осуществляется питание приборов различного номинала.

Расчёт трёхфазного трансформатора производится в соответствии со специальной документацией. На основе полученных данных выбирается нужная комплектация. Используется устройство не только для промышленных нужд, но и в бытовых приборах при производстве электронных схем управления.

Трёхфазный трансформатор может быть понижающим или повышающим, коэффициент преобразуемых величин зависит от числа витков обеих обмоток. Устройство может быть собрано из трёх однофазных аналогов или выполняется на общем сердечнике, сумма магнитных потоков каждой фазы в таком приборе будет равна нулю.

Результаты замеров должны соответствовать величинам, отражённым в сопутствующей документации, в противном случае трёхфазный трансформатор бракуется. Очень важно понимать, что обвязка и монтаж оборудования для распределительных устройств 110 кВ и выше не допускаются без надзора специалиста с завода, где производилось изготовление. При этом испытания должны проводиться согласно принятым правилам в присутствии компетентного лица.

Если трехфазный трансформатор соединён по схеме «Звезда», то элементы могут выполняться с глухозаземлённой или изолированной нейтралью (так называется узел, соединяющий концы фаз). Для высоковольтных РУ используется специальный зонт, который позволяет заземлять и разземлять нейтраль. Однако в распределительных устройствах для безопасности по 0,4 кВ используется заземлённый ноль.

Для защиты линий электропередач используются трансформаторы напряжения, с помощью которых контролируется питание. Они помогают сориентировать защиту по углам и величинам при наладке дифференциала срабатывания устройств. Чаще всего используются три трансформатора на каждую фазу.

Сегодня выпускаются трансформаторы напряжения с третьим керном под учёт. С его помощью осуществляется подключение счётчиков. Как правило, третий керн тоже соединяется по схеме звезды. Такое отделение цепей контроля от цепей учёта помогает получить более точные показания, так как класс точности керна для счётчика выше.

Электрическая энергия в промышленных масштабах не может передаваться в виде однофазного переменного тока. С этой целью успешно применяется трехфазный ток, а для его передачи используются трехфазные трансформаторы. Одним из способов трансформации трехфазного тока служит применение трех однофазных трансформаторов.

Соединение первичных и вторичных обмоток в этих устройствах осуществляется в одну из трехфазных систем – звезду или треугольник. Именно по этому принципу происходит работа мощных однофазных трансформаторов, которыми оборудуются крупные электростанции. Их первичные обмотки соединяются с соответствующими фазами генераторов, а вторичные обмотки, соединенные звездой, подключаются к соответствующим фазам линий электропередачи.

Принцип действия трехфазного трансформатора

Как видно из приведенной схемы, вместо трех однофазных устройств может быть использован один трехфазный трансформатор. В состав его магнитопровода входят три стержня, которые замыкаются ярмами сверху и снизу. На каждый стержень наматывается первичная и вторичная обмотка, соединяемые затем звездой или треугольником. Каждый стержень с обмотками по своей сути является однофазным трансформатором. Одновременно, он выполняет функцию отдельной фазы трехфазного трансформатора.

Под действием тока первичной обмотки во всех стержнях происходит появление магнитного потока. Следует учитывать принадлежность каждой такой обмотки к одной из фаз, входящих в трехфазную систему. Поэтому токи, протекающие по этим обмоткам, а также приложенные напряжения, относятся к трехфазным. Поэтому сформированные магнитные потоки тоже являются трехфазными.

Ранее считалось, что движение магнитного потока осуществляется по замкнутой траектории, то есть, проходя по стержню, он возвращается к его началу. В трехфазных трансформаторах такой обратный путь отсутствует, в нем просто нет необходимости, при условии одинаковой нагрузки фаз. Кроме того, отсутствует и необходимость нейтрального соединения в звезду.

Циркуляция каждого потока происходит лишь по собственному стержню. В конечном итоге все потоки сходятся в центральных частях верхнего и нижнего ярма. В этих точках получается геометрическое сложение этих потоков, сдвинутых между собой на величину угла 120 градусов. В результате, геометрическая сумма сложенных величин, окажется равной нулю. Следовательно, каждый магнитный поток проходит лишь по собственному стержню, обратного пути не имеет, а все три потока в сумме дают нулевое значение.

Читайте также:  Желтые обои в интерьере гостиной фото

Движение потоков крайних фаз происходит не только по стержню. Оно захватывает половину каждого ярма. Поток в средней фазе будет проходить только по своему стержню. Поэтому значение токов холостого хода в фазах, расположенных по краям, всегда превышает аналогичное значение в средней фазе.

Как передается трехфазный ток

Первичным источником питания в большинстве случаев является электрическая сеть. Ее напряжение представлено в виде синусоиды с частотой 50 Гц. Однако в тех случаях, когда линии электропередачи обладают большой протяженностью, происходит излучение передаваемой энергии в окружающее пространство, что приводит к дополнительным потерям. Поэтому в цепях электропитания высокой мощности применяется трехфазное напряжение.

Для того чтобы уменьшить излучение, сумма напряжений на всех трех фазах в любое время должна быть равна нулю. С этой целью производится сдвиг синусоидального напряжения по фазе в каждом проводе относительно друг друга на 120 градусов. В таком состоянии передача электроэнергии может осуществляться в двух вариантах: с помощью четырех или трех проводов линии передачи. Условные схемы каждого варианта отображены на рисунке.

Четырехпроводная линия позволяет выдавать потребителю два вида напряжения: фазное (220 В) и линейное (380 В). Трехпроводная схема позволяет выдавать лишь линейные напряжения. Формирование линейного напряжения описывается с помощью векторной диаграммы напряжений фаз. При положительном чередовании фаз, они условно увеличиваются по часовой стрелке. Для соединения обмоток трехфазных трансформаторов используются два основных способа – звезда и треугольник.

Соединение звездой

Данный вид соединения рекомендуется рассматривать на примере схемы «звезда-звезда». В этом случае источник тока и нагрузка соединяются методом звезды.

На рисунке обозначение фазных напряжений, вырабатываемых вторичными обмотками трансформатора, выполнено символами UA, UB, и UC. От фазных обмоток до нагрузки идут проводники, выполняющие функцию линейных проводов. Следует учитывать наличие напряжения не только между нулевым и линейным проводами, но и между двумя линейными проводниками. Такое напряжение называется линейным и обозначается UAC или UCA.

Значение линейного напряжения всегда превышает фазное. Разница между ними составляет √3 раза, поскольку представляет собой векторную разность фазных напряжений. Таким образом, трехфазная линия электропередачи позволяет получить не только 380 В, но и 220 В, в зависимости от того по какой схеме включена нагрузка.

Соединение треугольником

Соединение вторичных обмоток в трехфазном трансформаторе треугольником будет выдавать одинаковое линейное и фазное напряжение, как и при соединении звездой, если напряжение составит 220 В. При одинаковом значении потребляемой мощности, линейные токи будут превышать фазные в √3 раза.

Трехфазная система напряжений представляет собой симметричную схему. Это означает, что и магнитная система, которую имеют все трехфазные трансформаторы, будет симметричной. Такая система очень сложная в изготовлении, поэтому широкое распространение получила плоская конструкция, в которой отсутствует центральный стержень. Необходимость в нем отпадает, поскольку сумма магнитных потоков здесь равна нулю.

Плоский вариант конструкции считается более технологичным и удобным при компоновке, хотя она и является несимметричной. Токи в крайних фазах заметно превышают ток в средней фазе, из-за чего нарушаются фазовые углы. Для ликвидации такой асимметрии сечение в верхнем и нижнем ярме увеличивается примерно на 10-15% по сравнению со стержнем. Однако, несмотря на принятые меры, некоторая асимметрия все равно остается.

Подключение трех однофазных трансформаторов к трехфазной сети

Трехфазный трансформатор – трансформатор, предназначенный целям гальванической развязки цепей трех фаз с одновременным изменением амплитуды напряжения. Три фазы, это общеизвестно, ввел Доливо-Добровольский, но патент на изобретение получить не смог, потому что опережен на годы Николой Теслой.

Читайте также:  Двери раздвижные трехстворчатые межкомнатные

Благодарности

Вспомним замечательного автора СССР довоенных времен – Холуянова Федора Ивановича. Упрощенный рассказ приятнее слуху неподготовленного читателя, нежели лучший современный очерк о трехфазных трансформаторах.

Определения

Силовой трехфазный трансформатор средней мощности – не более 33,3 МВА с полным сопротивлением короткого замыкания не выше 25 – 0,3N/W%. N – номинальная мощность трансформатора (МВА), W – число стержней сердечника.

Большой силовой трехфазный трансформатор – мощность до 100 МВА, импедансом выше, определенного формулой, указанной для предыдущего класса изделий.

Распределительный трехфазный трансформатор – понижающий, мощностью до 2,5 МВА, с раздельными обмотками и охлаждением типа ON.

Строение

Авторы предлагают начинать рассмотрение трехфазного трансформатора с упрощения. Предполагается, читатели знакомы с цепями 220 вольт. Знают, как работает трансформатор.

Краткое описание работы однофазного трансформатора

Начать нужно с простой вещи: катушка индуктивности вокруг себя создает вихревое магнитное поле. Тянется вдоль оси, выходит наружу на северном полюсе. На рисунке показаны два витка проволоки. Ток идет с плюса на минус, направление линий напряженности магнитного поля определяется правилом «буравчика». Траектория загибается, в результате соседний виток (целый соленоид) охватывается некачественно.

Требуется по мере возможности полнее передать магнитный поток, обеспечивая гальваническую развязку (по току). При трансформации легко варьируется выходное напряжение. Используется при передаче электроэнергии потребителям.

Окончательно транспортировать поле вторичной обмотку способен сердечник из ферромагнитного сплава. Внутри материала напряженность магнитной индукции многократно возрастает. Обеспечивается плотное потокосцепление, ЭДС, наведенная на выходе, обретает громадную величину. Сердечник линии напряженности поля пронизывают вдоль оси. Получается описанный выше эффект.

Конструкция трехфазного трансформатора

Проще рассмотреть трехфазный трансформатор, представив тремя однофазными. Скрин показывает образчик стержневого типа. Подобно «броневому» (название принадлежит авторам) означает: обмотки надеты на стержни. Объединяются, замыкая линии магнитного поля ярмами. Слово стержень не предполагает наличия круглого сечения. Вероятно, присутствовало прежде, современными трансформаторами практикуются иные форы.

Сердечник изготавливается шихтованным, по определению не круглый. Сложно технологически. Трансформатор, снабженный круглым сердечником, круглый? Да, виток, охватывающий квадрат, по площади уступает круглому, аналогичной длины жилы. Очевидный факт, коэффициент использования материалов современного трансформатора чужд совершенству. Сердечник прямоугольный, ярма, легче компоновать пластинки шихты.

Трехфазный трансформатор рекомендуется представить тремя стержневыми, составленными бок к боку с образованием единого центрального не используемого стержня.

Поскольку фазы сдвинуты равномерно на угол 120 градусов друг относительно друга, геометрическая сумма векторов будет равна нулю. Если составить сердечники однофазных трансформаторов, магнитный поток по центральной части не пойдет. Выступает базисом работа цепей с изолированной нейтралью. Средний стержень не несет магнитного потока, следовательно, может быть выкинут из конструкции. Оставшаяся часть компонуется так:

  1. Катушки располагаются на параллельных стержнях.
  2. Первичная, вторичная обмотки фаз лежат на едином стержне.
  3. Сердечник замкнут ярмами.
  4. Согласно симметричности фаз различают две конструкции:
  • Вид сверху – равносторонний треугольник. Симметричность фаз.
  • Вид сверху – единая линия. Асимметричность фаз.

Симметричность фаз означает: входы равноправны. Если стержни выстроены в ряд, расстояние вдоль ярма меж крайними больше, нежели меж двумя другими парами. Магнитный поток станет смещаться по фазе, сигнал будет искажен. Сопротивление сердечника асимметрично для поля. Вызывает неравенство токов в холостом режиме. Эффект усиливается некачественной сборкой, плохой насыщенностью железа ярма.

Броневые трехфазные трансформаторы фактически поставленные друг на друга, охваченные единым сердечником однофазные. Асимметрия фаз отсутствует, первичная, вторичная обмотки лежат на одном стержне. Поскольку на центральных ярмах поток удваивается, сечение сердечника области должно сообразно увеличиваться.

Обмотка первичная разделена пополам, охватывает вторичную с обеих сторон, как показано рисунком (первичная – I, вторичная – II). У броневых трансформаторов одно неоспоримое преимущество – малые токи холостого хода. Считается, обусловлено коротким ходом напряженности поля внутри сердечника. Недостатков целых три:

  1. Больший вес при прежнем передаточном коэффициенте, аналогичной мощности.
  2. Обмотки сложно ремонтировать, поскольку со всех сторон окружены броней.
  3. Условия охлаждения хуже, хотя номинально объем больше. Сердечник нагревается, работая, перемагничиванием, сравнительно малыми вихревыми токами.
Читайте также:  Заменить подоконник у пластикового окна цена

Сердечники

Шихтованные сердечники набираются листами стали. Меньше толщина пластин, ниже будут потери на вихревые токи, сборка более кропотливая. Слои разделяются лаковым покрытием для взаимной изоляции. Препятствуя возникновению вихревых токов. Требования, предъявляемые к стали, достаточно типичные:

  1. Большое значение магнитной проницаемости обеспечивает усиление в десятки тысяч раз индукции поля. Следовательно, первое необходимое условие для работы трансформатора.
  2. Большое удельное сопротивление обеспечивается примесями кремния (по весу – до 4%). В результате потери снижаются до 50% у сильно-легированных образцов.
  3. Малая коэрцитивная сила, обусловливающая низкие потери на перемагничивание (узкая петля гистерезиса).

Давно замечено: площадь квадрата составляет 0,88 окружности. Следовательно, наиболее благоприятной станет выбранная кривая. Нерационально усложнять процесс производства, на практике поступают по-другому: трансформаторы малой мощности снабжены квадратными стержнями, средней – крестовидной (см. рис.), большой – круглой. Цель оправдывает средства, если подстанции перестанут беречь энергию, потери станут огромными. Скромный транзисторный приемник обходится малым. Экономия – потери невелики. Прямоугольный сердечник обеспечивает наивыгоднейшие условия теплоотвода, поскольку характеризуется большим объемом.

Иногда по углам располагают вставки диэлектрика, удерживающие обмотку вдоль нужной кривой. В масляных трансформаторах сердечник иногда снабжается щелями. Предполагается, циркулируя в ходах, жидкость станет охлаждать обмотку, сталь. Каналы оборудуются вдоль пластин, поперек. Второй случай продуктивнее по простой причине. Торцы пластин не покрываются лаком, поскольку в направлении токи Фуко (вихревые) не возникают, металл быстрее отдает тепло, распространяемое вдоль пластины. Первый способ проще обеспечить с точки зрения технологического процесса производства.

Провод плохо ложится прямой гранью сердечника, выгибается кнаружи, на углах трескается лаковая изоляция. Накладывает ограничения на процесс сборки. В процессе эксплуатации неизбежны тепловые вариации геометрических размеров, со временем усугубляет названные эффекты. Следовательно, прямоугольная катушка имеет меньшую механическую прочность. Вправду сказать, круглый стержень за счет более толстой намотки увеличивает объем ярма, применяют из-за частых отказов мощных трехфазных трансформаторов иной конструкции.

Несмотря на преимущества конструкций с симметричными фазами, чаще стержни ставятся рядком по очевидным причинам: упрощается технологический процесс. Если сердечник стержневой, сборка внахлест используется только для маломощных образцов, в других случаях ярмо идет встык. У броневых наоборот – маломощные впритык, прочие — внахлест.

Обмотка

В силовых трансформаторах обмотки концентрические, располагаются одна в другой, имеют общую ось. Чередующиеся обмотки показаны на рисунке выше, для сбыта широким массам радиолюбителей не выпускаются. При расчете внимание уделяют вычислению следующих параметров:

  1. Механическая прочность (см. выше), включая режим короткого замыкания.
  2. Электрическая прочность жил, изоляции.
  3. Температурные режимы работы (включая, максимальный).

Обмотка выполняется круглым, прямоугольным (иногда транспонированным) проводом. Разделение единой жилы на ряд жил выполняется, дополняя меру шихтования сердечника. Позволит уменьшить токи Фуко. При требуемом диаметре проволоки более 3,5 мм заменяют прямоугольной (ТК 16.К71 – 108 – 94). Слишком велики становятся просветы меж проводами. Круглое сечение наделено преимуществом: легче изготавливается, чаще встречается в обиходе. Прямоугольная проволока используется по большей части для намотки катушек. Следовательно, изготавливать невыгодно, процесс обходится дороже.

Прямоугольный проводник размером более 8х25 мм транспонируется. Медь под обмотку берется электротехническая, чистотой не менее 99,95%. Из-за дороговизны часто заменяется рафинированным алюминием. Металл характеризуется меньшим пределом прочности на растяжение, меньшей пластичностью, большим удельным сопротивлением. Изоляция провода изготавливается из телефонной, трансформаторной бумаги. Встречается лаковая:

  • ПБУ, прямоугольный медный провод с изоляцией из трансформаторной бумаги.
  • ПБ, медный прямоугольный провод с изоляцией из телефонной бумаги.
  • ПТБУ, транспонированный медный провод с бумажной изоляцией.
  • ПТБ, транспонированный медный провод с общей бумажной изоляцией.
Комментировать
320 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector