No Image

Для холодной штамповки целесообразно использовать сталь

169 просмотров
12 декабря 2019

считается такой процесс, когда металл заготовки под большим давлением и при соответствующей скорости деформирования приходит в состояние текучести и перемещается в штампе, заполняя форму матрицы и пуансона.

Практическая возможность применения холодной объемной штамповки зависит от технологичности конструкции изделия. Основным показателем технологичности является штампуемость материала. Технологический процесс холодной объемной штамповки состоит из ряда операций в зависимости от формы изделия. К разделительным операциям относится отрезка прутка, проволоки, трубы, полосы. К формоизменяющим операциям относятся выдавливание, высадка, осадка, калибровка.

Объем, форма и размеры заготовок определяются по чертежу с учетом припусков и напусков для доделочных операций. Сложное по форме изделие делят на элементы и, суммируя их, получают общий объем. Для определения расчетного объема заготовки сумму объемов элементов изделия и технологических отходов увеличивают на 3-7%.

В холодном состоянии могут штамповаться изделия из углеродистых и легированных сталей, а также из цветных металлов и их сплавов.

Рекомендуемые марки стали для холодной объемной штамповки:

мягкая сталь с низким сопротивлением деформированию (марки 08, 08кп, 10, 10кп, 15, 15кп); изделия типа втулок, стаканов без фланцев и с фланцами;

сталь средней твердости со средним сопротивлением деформированию (марки 20, 15Х, 15Г, 15ХВ, 20Х, 20Г, 20ХН, 20ХГ, 12ХНЗ, 18ХГТ); изделия типа стержней с головками;

твердая сталь с высоким сопротивлением деформированию (марки 30, 35, 40, 45, 30Х, 30Г, 35Х, 40Х, 40ХН, УЧ, У8, У10,У10А, ШХ15); изделия типа болтов, винтов, гаек, шариков, роликов.

Для холодной объемной штамповки вышеуказанных марок сталей необходимо иметь повышенное качество заготовок катаного и прессованного металла с ограниченным содержанием вредных примесей, точность и стабильность заготовок по сечению и длине.

Для высокоуглеродистых и легированных сталей рекомендуется производить штамповку в теплом и полугорячем виде с эффективным применением смазки. Для лучшего показателя штампуемости металла в технологическом процессе предусматривается предварительная и промежуточная термическая обработка. Выбор режима термической обработки определяется химическим составом и структурой штампуемого металла. Например, перед холодным выдавливанием заготовку из углеродистой и низколегированной стали фосфатируют с последующим омыванием. Фосфатирование заключается в термической обработке заготовок в фосфорнокислых солях цинка, марганца, железа, кадмия. Хорошие результаты по снижению трения, износа, удельных усилий достигаются применением цинкофосфатных покрытий.

Холодная штамповка является одним из основных видов ОМД.

К ним относятся вытяжка, формовка, обтяжка, гибка и др. Наиболее часто применяемой операцией холодной штамповки является вытяжка.

Вытяжка — холодная пластическая деформация, при которой из листовой заготовки получается объемная деталь сложной формы.

Основными требованиями к сталям, предназначенным для холодной штамповки, являются:

— хорошая штампуемость, т.е. способность пластически деформироваться в холодном состоянии.

— высокое качество поверхности после деформации.

Эти требования обеспечиваются механическими свойствами и структурой стали.

Требования по механическим свойствам включают в себя минимальную твердость (обычно не более 45HRВ) и максимальную пластичность. Способность к пластической деформации оценивается относительным удлинением и отношением предела текучести к пределу прочности. Этот показатель называют числом текучести. Хорошая штампуемость наблюдается в сталях с числом текучести σтв = 0,5-0,6и δ = 33 – 45%.

Требования к структуре включают в себя:

1.Среднее зерно феррита.

2.Мелкие выделения зернистого перлита.

3.Отсутствие карбидной сетки цементита третичного по границам зерен.

4.Отсутствие полосчатости структуры.

Сталь должна иметь среднее зерно (средний бал зерна 6-8 мм). Мелкое зерно не желательно, т.к. вызывает повышенную жесткость листа и, следовательно, быстрый износ штампов. Крупное зерно не желательно, т.к. ухудшает качество поверхности после штамповки. На поверхности появляются шероховатость, которую называют апельсиновой коркой. Особенно нежелательно иметь в сталях для холодной штамповки разнозернистость. При деформации такой стали в первую очередь растягиваются крупные зерна, как более пластичные, и в этих местах затем появляются мелкие трещины и надрывы, что является непоправимым браком.

Цементит в сталях для холодной штамповки должен иметь округлую форму, т.е. быть сферическим. Это обеспечивает наилучшую штампуемость. Недопустимо в таких сталях образование цементитной сетки по границам зерен, т.к. это приводит к резкому снижению пластичности. Нежелателен также мелкий сорбитообразный перлит, т.к. это резко повышает жесткость и упругость листа.

Полосчатость структуры и текстура прокатки также нежелательна т.к. вызывают неоднородность деформации по разным направлениям и на штамповках появляются фестоны (рис. 13).

А б

Рис.13. Различие свойств по разным направлениям (а) в листе

Читайте также:  Генератор на к561тл1 схема

и фестоны после штамповки (б)

Наиболее часто для холодной штамповки применяют углеродистые стали с содержанием углерода 0,05 — 0,2%, Mn ≤ 0,4% и минимальным содержанием газов N, O2, H2. Например, 05кп, 08кп, 08пс, 08сп, 10, 15, 20, Ст. 1 — Ст. 3.

Основной маркой стали для холодной штамповки является сталь 08кп. Она отличается наилучшей пластичностью и минимальной стоимостью. Однако недостатком этой стали является повышенная газонасыщенность. Повышенное содержание газов вызывает склонность этой стали к деформационному старению.

Деформационное старение это повышение предела текучести стали вызванное накапливанием атомов N2 и О2 вокруг дислокаций. Создание таких атмосфер атомов называют атмосферами котрелла.

Рис. 14. Диаграммы растяжения для стали склонной к деформационному

старению (а) и нестареющей (б).

Они блокируют перемещение дислокации и требуют большего усилия для начала пластической деформации. После отрыва дислокаций напряженность сдвига понижается и пластическая деформация облегчается. В результате на кривой растяжения появляется пик на площадке текучести (рис.14).

Отрыв дислокаций от атмосфер примесных атомов проходит неравномерно. В результате объем металла начинает деформироваться по плоскостям наиболее благоприятно ориентированным по отношению к действующей нагрузке. Такая преимущественная деформация проявляется в виде появления линий скольжения на поверхности металла. Сетка таких линий выглядит как царапины и снижает качество поверхности, что является дефектом для деталей после холодной штамповки. Для устранения этого дефекта применяется предварительная деформация металла в прокатных валках с обжатием 2%. Она называется дрессировка. Малая пластическая деформация вызывает отрыв дислокаций от атмосфер примесных атомов и последующая штамповка уже не вызывает появлений скольжения. Однако эффект от дрессировки сохраняется от 10 до 12 дней.

Основные марки стали, применяемые для холодной штамповки

Предел прочности МПА Относительное удлинение, %
Марка Примечание
Ст.2-Ст3 08кп 08пс, 10кп 15кп 15, 20кп 340-420 280-390 280-420 300-440 320-460 340-480 350-510 400-550 26 — 31 30—34 28—32 28—30 27—29 25—27 24—26 23—24 Группы вытяжки Н, Г, ВГ
08кп 08Фкп 08Ю 260—330 260—340 42 — 44 СВ, ОСВ СВСВ

Устранить склонность стали к деформационному старению можно введением в нее алюминия или ванадия в процессе получения. Малые добавки этих элементов в количестве 0,02 — 0,05% связывают атомы азота в нитриды. В результате диффузия атомов азота блокируется. Такая сталь называется нестареющей, например 08Ю, 08Ф, 08ЮА, 08ГСЮТ, 08ГСЮФ.

Для обеспечения высокой пластичности стали для холодной штамповки, основным видом термообработки для нее является отжиг на рекристаллизацию. Стальной лист после холодной прокатки обладает повышенной прочностью, в результате наклепа и для его устранения применяют отжиг при температуре 660 — 680ºС. Отжиг применяют для стали в рулонах либо для пачек нарезанных листов. Продолжительность такого отжига определяется массой рулона и составляет 10-20 час. Для того чтобы получить после такого отжига среднее зерно необходимо, чтобы предшествующая деформация составляла 30-40%. При малой деформации возможно появление крупно зернистости. А при большой степени деформации возможно образование текстуры.

Для штамповки изделий, требующих повышенной прочности, применяют низколегированные «двухфазные стали» со структурой, ‘состоящей из высоко-пластичной ферритной матрицы и упрочняющей фазы мартенсита или бейнита в количестве 20—30 %. Такие стали называют двухфазными ферритно-мартенситными (ДФМС). Для получения такой структуры в сталь добавляют легирующие элементы и проводят перед штамповкой предварительную, упрочняющую термообработку. В качестве основных легирующих элементов вводят Mn – 1,4-2%,Si от 0,5 до 1,5%, Cr – до 08 — 1%, Mo — до 0,2-0,4%, а так же небольшие добавки Al и W. Количество углерода в этих сталях 0,03-0,06%.

Типовые марки сталей:

Для создания необходимой структуры стали при её производстве проводят ускоренное охлаждение после горячей прокатки, либо дополнительно нагревают и охлаждают сталь с температурой превышающей точку А1, но ниже точки А3.. По своей сути такая термообработка называется неполной закалкой. В результате структура такой стали состоит из 70% феррита и 30% мартенсита. Феррит обеспечивает высокую пластичность, хорошую штампуемость, а мартенсит повышенную прочность. В процессе штамповки деформация сосредотачивается в зернах феррита, и повышенная степень наклепа увеличивает прочность готового изделия. После штамповки предел прочности такой стали в 1,3÷1,5раза превышает предел прочности обычных углеродистых сталей. Дополнительный отпуск не требуется.

В качества исходного заготовок используются различные метал-лические и неметаллические материалы, обладающие достаточной пластичностью, в виде листа, полосы или ленты.

Читайте также:  Декоративная защита батарей отопления

Из углеродистой стали обыкновенного качества групп А, Б и В штампуют детали, несущие малые нагрузки и бытовые изделия. Из качественной углеродистой стали марок 10, 15 и др. – детали с повышенными требованиями к прочности и качеству поверхности. Хорошими пластическими свойствами обладает низкоуглеродистые кипящие стали (05кп, 08кп, 10кп, 15кп и др.), однако при длительном хранении она стареет с повышением твердости и прочности и уменьшением пластичности. Это приводит к появлению в штампованных деталях поверхностных дефектов. Используя присадки и раскислители (алюминий, титан, ванадий и др.), получают нестареющие стали (08Фкп, 08Юпс и др.).

Горячекатанную листовую сталь общего назначения, имеющую в состоянии поставки слой окалины, штампуют редко, поскольку окалина приводит к быстрому износу пуансонов и матриц. Декапированную (отожженную, очищенную от окалины) листовую сталь толщиной 0,25 – 3 мм получают прокаткой мягкой конверторной или мартеновской стали, отжигают и очищают (травлением) от окалины. Она хорошо штампуется и из нее изготавливают малонагруженные детали, не предназначенные для последующего полирования хромирования или никелирования.

Холоднокатанную листовую сталь выпускают светлой без окалины. Такую сталь после горячей прокатки, отжига и очистки от окалины прокатывают в холодном состоянии до заданной толщины с промежуточным или окончательным отжигом в защитной среде.

Тонколистовую качественную углеродистую сталь по степени отделки поверхности подразделяют на четыре группы. На листах группы I с особо высокой отделкой поверхности на лицевой поверхности не допускаются дефекты. На листах группы II (высокая отделка поверхности) допускаются легкие царапины, небольшая рябизна. Листы этих групп изготавливают только холодной прокаткой. Листы группы III (повышенная отделка поверхности) могут быть как горяче-, так и холоднокатанными. На лицевой стороне листа допускаются царапины, риски, рябизна, отпечатки валков в пределах половины допуска на толщину листа. Листы группы IV с нормальной отделкой поверхности выпускаются горячекатанными. На обеих сторонах допускаются меткие поры и раковины, легкие царапины и риски, рябизна в пределах допуска на толщину листа.

По точности выполнения толщины листа сталь бывает трех групп: А – высокой точности (качественные холоднокатанные листы), Б – повышенной точности (обыкновенного качества и качественные холодно- и горячекатанные листы) и В – обычной точности (обыкновенного качества и качественные горячекатанные листы).

По способности к вытяжке в холодном состоянии различают листы групп: ВГ (для весьма глубокой вытяжки), Г (для глубокой вытяжки), Н (для нормальной вытяжки).

По степени твердости стальная низкоуглеродистая хо­лоднокатаная лента может быть особо мягкой (ОМ), мягкой (М), полумягкой (ПМ), пониженной твердости (ПТ) и твердой (Т); по качеству поверхности – I, II и III класса; по точности изготовления – Н (нормальной точности), ВШ (повышенной точности по ширине), ВТ (повышенной точности по толщине), В (повышенной точности по ширине и толщине); по характеру кромок – НО (необрезная лента), О (обрезная лента).

Черную отожженную полированную жесть изготовляют толщиной 0,18 –0,55 мм, а белую жесть – толщиной 0,21 – 0,55 мм. После прокатки, отжига и удаления окалины жесть дополнительно прокатывают для получения зеркальной поверхности, которую у черной жести оставляют темной, а у белой покрывают тонким слоем олова. Из черной жести штампуют тонкостенные детали бытовых изделий, подвергающиеся затем окраске. Из белой жести изготовляют консервные банки, коробки для упаковки пищевых продуктов, некоторые тонкостенные детали, поверхности которых должны быть защищены от коррозии.

Для изготовления ответственных деталей применяют легированные конструкционные стали марок 10Г2А, 12Г2А, 20ХГСА, 25ХГСА и др. Они обладают хорошей способностью к штамповке в отожженном состоянии и хорошо свариваются, что важно при создании штампосварных конструкций.

Детали с повышенной коррозионной стойкостью штампуют из коррозионно-стойких хромистых или хромоникелевых сталей (марок 12Х13, 12Х18Н9 и др.).

Совершенствование сортамента и повышение качества металло-продукции способствуют экономии металла. Металлургическая промышленность освоила выпуск многих новых материалов: двухслойных (в т.ч. биметаллических) и многослойных стальных листов с покрытием из пластмассы; листовой стали специального назначения и др.

В приборо- и аппаратостроении вместо коррозионно- и жаростойких сталей используют холоднокатаную полосу (сталь 08кп), диффузионно-хромированную в вакууме. Глубина защит­ного слоя 30 – 100 мкм. Сталь обладает хорошими пластическими свойствами и стойкостью во многих активных средах при повышенной температуре. Толщина полосы 1 – 1,5 мм, ширина – до 320 мм.

Читайте также:  Зеркало в металлической рамке

Стальные полосы с полимерным покрытием (металлопласт) применяют в химической, автомобильной, пищевой, радиотехнической промышлен-ности. Они обладают высокими коррозионно- и износостойкостью, электро- и звукоизоляционными свойствами. Толщина пластмассового покрытия 0,3 мм при толщине стального листа 0,5 – 1 мм.

Алюминий и его сплавы (дуралюмины) находят широкое применение при изготовлении различных деталей приборов, бытовых изделий и т. д. Эти материалы отличаются легкостью, пластичностью, хорошо проводят теплоту и электрический ток. Наиболее часто применяют алюминий марок Al, A2, A3, АД, АД1 и дуралюмин марок Д1, Д6, Д16.

Из медных листов и лент (марок Ml, M2, МЗ) штампуют в основном детали электротехнической аппаратуры. Латунь (главным образом марок Л62, Л68, Л70) применяется при штамповке деталей часов, радиодеталей, посуды и др. Для холодной штамповки применяют также алюминиевые, бериллиевые и кадмиевые бронзы, упрочняемые термической обработкой.

Никель марок HI, H2, НЗ и его сплавы (мельхиор и нейзильбер) применяют для изготовления химической посуды, приборов, деталей часов, ювелирных изделий.

Магниевые сплавы отличаются легкостью, прочностью, удовлетворительной пластичностью при комнатной температуре и высокой пластичностью при нагреве до 350 – 380°С. Магний в 1,5 раза легче алюминия и в 4,5 раза легче стали. Сплавы магния марок МА1 и МА8 (повышенной коррозионной стойкости) широко применяют для штамповки самых разнообразных изделий. Из деформируемых магниевых сплавов изготовляют детали электротехнического оборудования, РЭС и ЭОС.

Титан и его сплавы, обладающие высокой прочностью при малой плотности, все шире используется в штамповочном производстве для изготовления ответственных деталей РЭС и ЭОС. Некоторые операции штамповки титана проводят с подогревом. В основном применяют деформируемые сплавы титана марок ВТ1-1, ВТ1-00, ВТ-5, ВТ-6, ОТ4.

Неметаллические материалы используют для штамповки главным образом прокладок, изоляционных и декоративных элементов, деталей, не подвергающихся большим механическим и термическим воздействиям. Наибольшее применение находят пластические массы, резина, эбонит, материалы на основе бумаги (картон, фибра), материалы минерального происхождения (слюда, миканиты).

Наиболее распространенными листовыми материалами из пластмасс являются: гетинакс, текстолит, органическое стекло, винипласт, полистирол, фторопласт, полиуретан, целлулоид и др.

Гетинакс (прессованная бумага, пропитанная фенолформальдегид-ными или эпоксидными смолами) поддается лишь вырубке, а текстолит (прессованная ткань, пропитанные такими же смолами) – вырубке, а при нагреве – гибке и вытяжке.

Винипласт и органическое стекло (полиметилметакрилат) – материалы с высокими электроизоляционными и антикоррозионными свойствами – хорошо штампуются в подогретом состоянии.

Листовой целлулоид бывает технический белый, технический прозрачный, авиационный (прозрачный) и галантерейный (различного цвета). Целлулоид легко штампуется, особенно при нагреве.

Из резины штампуют главным образом прокладки и детали, необходимые для герметизации пневматических и гидравлических систем, электроизоляции, уменьшения вибраций, шумов. Из-за высокой эластичности резины ее штамповка затруднена, поэтому в основном изделия вырезают. Вулканизированная резина с большим содержанием серы – твердый и вязкий эбонит, обладающий очень высокими электро-изоляционными свойствами, при нагреве поддается штамповке.

Основными листовыми материалами, получаемыми на основе бумаги, являются картон и фибра. Картон прессуют из бумажной массы, а фибру получают обработкой специальной бумаги раствором хлористого цинка. Картон и фибру можно вырезать на штампах обычного типа. Штампуют также фетр, кожу, войлок, прессшпан и др.

Материал, поступающий в цехи холодной штамповки, имеет специальный документ – сертификат, в котором завод-поставщик указывает его марку, химический состав, механические свойства, размеры листов, полос или прутков, массу партии. Перед использованием материала в производство он подвергается целому ряду проверок. К ним относятся общие проверки – установление размеров и состояния поверхности, а также при необходимости химические, металлографические, механические и технологические испытания.

Химический анализ устанавливает соответствие состава материала требованиям ГОСТ. Металлографические исследования, т. е. исследования макро- и микроструктуры, позволяют установить в металле наличие усадочных раковин, рыхлостей, волнистости, трещин, включений, а также определить направление волокон (что важно при гибке и других операциях) и характер среза при вырубке. Определяют размер зерен и характер структуры. По этим данным судят о штампуемости материала.

Для определения пригодности материала к той или иной обработке давлением проводят технологические испытания – пробы. Листовые материалы, предназначенные для штамповки, испытывают на срез, изгиб, перегиб, пригодность к вытяжке и др.

Не нашли то, что искали? Воспользуйтесь поиском:

Комментировать
169 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector