No Image

Дроссель трансформатор принцип работы

СОДЕРЖАНИЕ
941 просмотров
12 декабря 2019

Устройство дроссель-трансформатора

Дроссель-трансформатор — прибор, обеспечивающий прохождение тягового тока в обход изолирующего стыка.

Устройство ДТ представляет собой Ш-образный сердечник с ярмом, изготовленные из электротехнической стали. Основная и дополнительная обмотки располагаются на среднем стержне сердечника. Вся конструкция помещёна в чугунный корпус, заполненный трансформаторным маслом и закрытый крышкой. На крышке имеются пробки, через которые осуществляется контроль уровня масла.

В устройстве ДТ для участков с электротягой постоянного тока между ярмом и сердечником предусмотрена гетинаксовая пластина, обеспечивающая немагнитный (воздушный) зазор в магнитной цепи ДТ.

Основная обмотка (ОО) рассчитана на прохождение тягового тока и имеет 3 вывода, 2 из которых (крайние) подключаются к рельсовым линиям. Средний вывод подключается к среднему же выводу ДТ смежной РЦ.

Дополнительные обмотки (ДО) ДТ обеспечивают подключение приборов релейного и питающего концов РЦ. А так как эти приборы соединены с рельсовой линией индуктивно, снижается воздействие на работу РЦ постоянной составляющей тягового тока. Как правило, число витков в дополнительных обмотках больше количества витков в основных обмотках.

Дроссель-трансформатор: принцип работы

Дроссель-трансформаторы — согласующие трансформаторы, что обеспечивает независимость работы рельсовой цепи от величины сопротивления соединительных проводов. Это особенно ценно при длинных РЦ.

Принцип работы ДТ заключается в следующем: часть тягового тока Iт1, проходя по одному из рельсов, оказывается в одной полуобмотке ДТ. В это время другая часть тягового тока Iт2 течёт через вторую полуобмотку ДТ. Через перемычку суммарный ток Iт1+ Iт2 попадает в среднюю точку ОО смежного ДТ и, разделившись на 2 части, проходит по рельсовым нитям соседней РЦ.

Создаваемые токами, протекающими в полуобмотках, потоки направлены в разные стороны. По этой причине при Iт1= Iт2 разностный поток в сердечнике ДТ=0. В результате в ДО тяговый ток не наводит электродвижущую силу (ЭДС).

Сигнальный ток от источника питания рельсовой цепи попадает в обмотку реле так: ДО ДТ на питающем конце обтекается сигнальным переменным током. Это создаёт в сердечнике переменный магнитный поток, под воздействием которого в ОО индуктируется переменная ЭДС.

Это, в свою очередь, приводит к возникновению в рельсовой линии сигнального тока Iс, который, проходя через ОО релейного ДТ, индуктирует в его ДО ЭДС. Под действием этой силы происходит срабатывание путевого реле И (в приведённой схеме РЦ — импульсное реле переменного тока). При этом сам ДТ на питающем конце РЦ выполняет роль понижающего, а на релейном — повышающего (токи Iс и Iт должны быть разными по частоте).

Как работает дроссель.

В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели — индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества — значительная экономия электроэнергии и отсутствие сильного нагрева.

Каково устройство дросселя, на чем основан принцип его работы?
Устроен дроссель очень просто — это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум — латинское название железа), в том или ином количестве.

Без дросселя, схема будет работать как обычно — цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.
Присмотревшись, можно заметить, что во первых, лампа загорается не сразу, а с некоторой задержкой, во вторых — при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит потому что, в момент включения ток в цепи возрастает не сразу — этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют — индуктивностью.

Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности — 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется — Э.Д.С. самоиндукции.

Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель — не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.

Графически это выглядит таким образом.

Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется — возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется — реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого — магнитной проницаемостью, а так же его формы.

Читайте также:  Голубцы в капустном листе рецепт с фото

Магнитная проницаемость — число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале — в вакууме.)
Т. е — магнитная проницаемость вакуума принята за еденицу.

В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.
В электромагнитах реле — сердечники подковоообразной и цилиндрической формы из специальных сталей.

Для намотки дросселей и трансформаторов используют замкнутые сердечники — магнитопроводы Ш — образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц — различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.

Как работает трансформатор.

Рассмотрим работу дросселя собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно — нет.

Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться — перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее — номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить — наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной, а обмотка, с которой трансформированое напряжение снимается — вторичной.

Отношение числа витков вторичной(Np) и первичной (Ns) обмоток равно отношению соответствующих им напряжений — Up(напряжение первичной обмотки) и Us(напряжение вторичной обмотки).

Таким образом, устройство состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока можно использовать для изменения питающего напряжения — трансформации. Соответственно, оно так и называется — трансформатор.

Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток(Is). Это вызовет пропорциональное увеличение тока(Ip) и в первичной обмотке. Будет верным соотношение:

Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов. При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:
1. Допустимые токи и напряжения для первичной и вторичной обмоток.
2. Максимальную мощность трансформатора — мощность которая может длительное время передаваться через него, не вызывая перегрева обмоток.
3. Диапазон рабочих частот трансформатора.

Параллельный колебательный контур.

Если соединить катушку индуктивности и конденсатор — получится очень интересный элемент радиотехники — колебательный контур. Если зарядить конденсатор или навести в катушке Э.Д.С., используя электромагнитное поле — в контуре начнут происходить следующие процессы: Конденсатор разряжаясь, возбуждает электромагнитное поле в катушке индуктивности. Когда заряд истощается, катушка индуктивности возвращает запасенную энергию обратно в конденсатор, но уже с противоположным знаком, за счет Э.Д.С. самоиндукции. Это будет повторяться снова и снова — в контуре возникнут электромагнитные колебания синусоидальной формы. Частота этих колебаний называется резонансной частотой контура, и зависит от величин емкости конденсатора(С), и индуктивности катушки (L).

Параллельный колебательный контур обладает очень большим сопротивлением на своей резонансной частоте. Это позволяет использовать его для частотной селекции(выделения) в входных цепях радиоаппаратуры и усилителях промежуточной частоты, а так же — в различных схемах задающих генераторов.

Калькулятор расчета индуктивности однослойной катушки.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт "Электрика это просто".

Для стабилизации повышенных тяговых токов и увеличенных токов асимметрии используются дроссель-трансформаторы. Дросселем называется катушка индуктивности, которая способна убрать помехи, сглаживать пульсацию тока, развязывать части схемы друг от друга по высокой частоте, а также накапливать энергию в магнитном поле. Устройство носит название «реактора» (последний не нуждается в применении привода и других движущих сил, а работает по принципу динамики).

Таким образом, главным назначением дросселя является задержка тока определенного частотного диапазона или накапливание энергии за определенный промежуток времени в магнитном поле. Накопленная энергия применяется в различных областях промышленности и в бытовых условиях. Давайте узнаем об этом больше.

Читайте также:  Деревянные дома терем фото

Принцип работы

В основе принципа работы лежит принцип самоиндукции катушки. В конструкции прибора присутствует всего лишь одна обмотка, но ввиду принципа работы и области применения устройство часто называют дроссель-трансформатором.

Катушка прибора состоит из изолированных между собой пластин (чаще всего стальных или ферромагнитных). Изолирование производится во избежание образования токов Фуко, которые создают помехи. Сердечник обладает большой индуктивностью, но при этом является мощным сдерживающим барьером (например, при сильном росте или спаде напряжения в сети).

Устройство способно выдержать различные диапазоны колебаний:

  • низкие (от 20 Гц до 20 кГц);
  • средние (или ультразвуковые, от 20 до 100 кГц);
  • высокие (свыше 100 кГц).

Высокочастотные дроссели отличаются по конструкции от низко- и среднечастотных.

Разновидности

Приборы делятся на:

  1. Низкочастотный дроссель-трансформатор внешне похож на примитивный железный трансформатор. Отличием является компоновка с одной обмоткой. Катушка оказывает значительное противодействие изменению тока в цепи – при его понижении прибор способен поддержать необходимый уровень, а при повышении – снижать.
  2. Высокочастотные схемы являются более распространенными. Катушки таких приборов навиваются на сердечники (ферритовые, стальные) или на пластмассовый каркас. При работе с волнами среднего или длинного диапазона часто применяется секционная намотка.

Дроссель с сердечником обладает меньшими габаритами, нежели без него.

Основными параметрами прибора является индуктивность (единица измерения – Гн) и сопротивление (Ом). Важными характеристиками считаются напряжение, номинальный ток и добротность.

Область применения и назначение дросселей постоянного тока

Устройства, например, дроссель-трансформатор ДТ-0.6-1000, предназначены для установки на железнодорожных путях, которые оборудованы автоблокировкой переменного и электрической тягой постоянного тока. Также приборы приведенного типа применяются для стыкования систем электрической тяги.

По назначению дроссель-трансформаторы бывают следующими:

  1. Дроссели, которые работают на вторичных импульсных источниках питания. Вначале катушкой накапливается энергия от первоисточника в собственном магнитном поле, а затем возвращает ее в нагрузку.
  2. Дроссели для пуска двигателей. В данном случае приборы выступают ограничителем пусковых и тормозных токов. Для приводов, мощность которых не превышает 30 кВт, конструкция дросселя имеет сходное устройство с трехфазным трансформатором.
  3. Дроссель насыщения. Применяется в стабилизаторах напряжения и в некоторых преобразователях (например, феррорезонансных). Также прибор используется в магнитных усилителях, где сердечник изменяет индуктивное сопротивление цепи подмагничиванием.
  4. Сглаживающие дроссели. Применяются для устранения пульсаций выпрямленного тока (например, при отсутствии конденсаторов в ламповых усилителях).

Также приборы широко применяются в сварочном деле, при установке освещения, в системах сигнализации, централизации, блокировки автоматики, механики и т. д.

Основные элементы устройства. Технические характеристики

Основными элементами устройства являются:

  • сердечник;
  • ярмо;
  • чугунный корпус;
  • крышка;
  • муфта;
  • труба;
  • дополнительная обмотка;
  • уплотнитель.

В технических характеристиках указывают: число витков, полное сопротивление и коэффициент трансформации в основной и дополнительной обмотках. Например, в дроссель-трансформаторе ДТ 500 число витков основной обмотки – 7+7, дополнительной – 1560, 322, 1238. Полное сопротивление при этом оставляет 0,2–0,22 Ом, а коэффициент трансформации – 40, 23 и 17.

Отличие устройств по цветовой маркировке

Каждый прибор электронного дроссель-трансформатора маркируется в зависимости от своих параметров. Для упрощения расшифровки длинных и сложных аббревиатур была введена цветовая маркировка.

Последняя являет собой шифр из нескольких цветных колец, определяющих индуктивность устройства. Первые два показывают номинальную индуктивность, третье – множитель, а последнее – допуск. Такие различия позволяют даже мастеру-новичку с легкостью определить подходящий прибор.

Важно! Если на дросселе показано лишь 3 кольца, то его допуск равен 20 %.

Устройство дросселя и его назначение на примере железнодорожного пути

На некоторых участках железных дорог устанавливаются рельсовые цепи переменного тока. На данных (электрофицированных) участках контактный провод является прямым проводником тока электровозам, а обратным служат рельсовые нити и земля.

В случае, когда ток пропускается по обеим рельсовым нитям, то устраиваемая рельсовая цепь переменного тока называется двухниточной. В этом случае назначением дроссель-трансформатора является пропуск обратного тягового тока в обход изоляционных стыков по каждую сторону. Каждое устройство имеет две обмотки: основную и дополнительную.

Во время движения состава ток протекает по обеим половинам обмотки дроссель-трансформатора, далее токи сталкиваются в средней точке и вновь разветвляются в направлении тяговой подстанции. Правильная установка приборов обеспечивает отсутствие влияние тягового тока на аппаратуру.

Дроссель-трансформатор ДТ 1000

Такой прибор рассчитан на пропуск тягового тока 1000 А по каждой секции новой обмотки. В среднем, вывод обмотки – 2000 А.

Диапазон рабочих температур прибора составляет от минус 50 до +45 градусов.

Читайте также:  Cr123 аккумулятор и зарядное устройство

Коэффициент трансформации в приведенной модели может составлять 40, 23, 17. Габаритные размеры: 670 х 480 х 380 мм. Масса дроссель-трансформатора ДТ 1000 составляет 157 кг (±3 кг).

Аналоги дросселей

Большинство являются габаритными. Для того чтобы сохранить параметры и при этом уменьшить площадь дросселя, катушку заменяют полупроводниковым стабилизатором. В конечном итоге получается электронный дроссель.

Устройство дроссель-трансформатора способно стабилизировать колебания напряжения и уменьшить его пульсацию.

Важно! Поскольку электродроссель является полупроводниковым устройством, его нельзя применять в высокочастотных приборах.

Расчет дросселя

В методиках расчета дроссель-трансформатора применяются методы нечеткой логики, нейронных сетей, резольвента Ла-Гранджа и т. д. Современные программы позволяют вычислить необходимые параметры прибора всего за несколько минут. Весь процесс расчета состоит из таких этапов:

  1. Вводятся необходимые данные (точки кривой намагничивания, материал сердечника и т. д.).
  2. Далее программа выдает данные о кривой намагничивания, корректирует значения и ошибки.
  3. Система подсчитывает геометрические параметры модели сердечника.

Воздушный зазор в приборе можно рассчитать самостоятельно, используя при этом формулу:

L – индуктивность обмотки дросселя, Гн;

I – сила постоянного тока, проходящего по обмотке, А;

V – объем железного сердечника.

Величина ∂, которая необходима для подсчета зазора стального сердечника, находится по специальной номограмме.

Например, при условиях, что L = 20 Гн, I = 60 мА, V = 40 см 3 , то

L•I 2 /V= 10•3600•10-6/40 = 9•10 -4 .

По номограмме определяется значение ∂ = 20•10-3= 0,2 мм.

Исходя из этого, зазор с каждой стороны должен составлять по 1 мм.

Как изготовить дроссель самостоятельно

Для того чтобы самостоятельно сделать из дросселя трансформатор, необходимо подсчитать количество витков на вольт для имеющегося сердечника. Затем дроссель аккуратно разбирается и производится процесс обмотки будущего трансформатора. При сборке следует учитывать, что зазор, который присутствовал в дросселе до разборки, следует устранить.

Также можно изготовить трансформатор из дросселей. Количество используемого материала напрямую зависит от предназначения изобретения.

Технологический процесс замены дроссель-трансфоматора

Переустановка и снятие дроссель-трансформатора производится в следующем порядке:

  1. После получения разрешения на поведение работ снимается электропитание.
  2. Далее демонтируется защитный кожух.
  3. После проведения вышеописанных операций следует освободить от грунта изолирующую трубу ввода кабеля и очистить запас кабеля.
  4. Далее откручиваются гайки болтов крепления и снимается крышка кабельной стойки.
  5. Затем отсоединяются кабельные жилы и вытягивается кабель из стойки изоляционной трубы.

Установка электротяговых соединителей в обход производится в следующем порядке:

  1. Демонтируется по одному соединению штепсель-перемычки дросселя и рельс по обеим сторонам изолирующих стыков, для чего на каждом из них следует открутить и снять контргайку, гайку открутить до конца резьбы, выбить штепсель из рельса, отсоединить перемычку от рельса.
  2. В освободившиеся отверстия установить штепсели соединителей. Накрутить на них гайки и закрепить их до упора.

Установка и монтаж дроссель-трансформатора производится в порядке, обратном демонтажным работам.

Важно! Перед установкой следует внимательно ознакомиться с инструкцией и порядком проведения работ. Необходимо учитывать место установки дросселя (на питающем конце либо на секциях) в зависимости от его разновидности и назначения.

Техника безопасности при проведении работ

При установке путевого дроссель-трансформатора следует придерживаться правил техники безопасности и охраны труда:

  1. Работа выполняется бригадой, один из членов которой обязан следить за движением поездов. Перед проведением работ следует провести инструктаж по технике безопасности.
  2. Замена дроссель-трансформатора на конце рельсовой цепи, от которой происходит питание, производится при снятом напряжении путем отсоединения проводов с обмотки трансформатора в релейном шкафу сигнальной установки или изъятия дужек на кроссовом штативе электрической централизации. После того как напряжение снято, при помощи измерительных приборов необходимо убедиться в том, что напряжение в ранее отключенных проводах отсутствует. В месте отключения от питания электротоком вывешивается запрещающий плакат «Не включать! Работают люди».
  3. Все земляные работы производятся в рукавицах.
  4. При проведении погрузочно-разгрузочных работ запрещается находиться в зоне манипуляций с грузом.

Важно! Прежде чем приступить к выполнению работ, следует обеспечить бесперебойную цепь протекания обратного тягового тока путем установки временных перемычек требуемого сечения в обход изоляционных стыков.

Если во время проведения работ приближается поезд, следует заблаговременно покинуть объект на безопасное расстояние и убрать инструмент.

В экстренных случаях необходимо оказать первую медицинскую помощь пострадавшему, вызвать бригаду скорой помощи и сообщить о случившемся главному по участку.

Подключение любых переносных измерителей к электроцепям, которые находятся под напряжением, допускается лишь при наличии на проводах приборов специальных наконечников с изоляцией.

Естественно, что бригада, не прошедшая курс специальной подготовки и инструктаж по ТБ, к работе не допускается.

Комментировать
941 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector