No Image

Двигатель и генератор в одном корпусе

СОДЕРЖАНИЕ
386 просмотров
12 декабря 2019

В октябре 1975 года изобретатель из Калифорнии, Роберт Александер, представил публике усовершенствованный привод для автомобиля. По мысли изобретателя, этот электрический привод должен был в ближайшем будущем избавить владельцев автомобилей от необходимости использовать сжигаемое топливо, от лишнего шума, и от потребности в постоянной подзарядке аккумуляторов.

Прибывшие на демонстрацию эксперты были сильно озадачены, ведь казалось, что энергия получается из «ничего». Тем не менее, автомобиль легко ездил без топлива со скоростью 36 миль в час. На сомнения экспертов изобретатель ответил, что машина ездит, и ей все равно на их доводы. Начальную мощность обеспечивал переделанный электродвигатель в 7/8 лошадиных сил.

Электромотор был переделан так, чтобы на его выходе получалось 12 вольт, иначе выходная мощность оказалась бы слишком большой. Сыновья Роберта и его партнер Джеймс Смит за 45 дней переделали автомобиль, чтобы продемонстрировать возможность езды без топлива и без загрязнения окружающей среды.

На демонстрацию была приглашена пресса, а позже (когда патент US3913004 был уже получен) одному из журналистов поведали детали проекта: вращение электродвигателя начинается от батареи, гидравлическая и воздушная системы автомобиля приходят в действие, при этом батарея успевает перезаряжаться от генератора. На эту переделку Александер потратил всего 500 долларов.

Александер и Смит сами оказались не в состоянии полностью объяснить, каким же образом получается эта энергия из «ничего», тем не менее они отметили, что люди уже давно в состоянии сделать гораздо больше того, чем они знают и понимают, и за примерами далеко ходить не нужно — достаточно взглянуть на этот автомобиль, который ездит. Изобретатели назвали продемонстрированное явление «Super Power», поскольку здесь используется целых три типа мощности для достижения поставленной цели.

В основе конструкции — трансформатор (преобразующее устройство), который является одновременно ротором генератора (пересекается магнитным потоком). Выход переменного тока в результате является продуктом двух электромагнитных действий. Напомним, что скорость изменения ускорения — третья производная координаты — это рывок.

Ротор представляет собой сердечник трансформатора, и имеет на себе группы парных обмоток. В каждой секции ротора по две обмотки, одна из которых работает как первичная обмотка трансформатора и как моторная обмотка, а вторая — как вторичная обмотка трансформатора и как генераторная обмотка. При этом на статоре расположены только постоянные магниты.

В работе генератора используются известные технологии управления и взаимодействия с магнитным полем. Трансформируемая и генерируемая мощности синхронно сочетаются, что и приводит к увеличению выходной мощности.

Первичные обмотки содержат меньшее количество витков чем вторичные обмотки, в которых при пересечении силовых магнитных линий наводится большая ЭДС, чем у источника постоянного тока (которым выступает батарея). Магнитное поле статора пересекает ротор, и мотивирует его к движению, при этом генерирует во вторичных обмотках энергию.

Выход переменного тока во вторичных обмотках является по своей сути синхронизированной функцией трансформируемой энергии из первичных обмоток, объединенных в общих пазах ротора со вторичными обмотками, и генерируемой энергии. В итоге сила тока и напряжение на выходе соответственно увеличиваются.

В одной из изготовленных авторами установок, имеющей четыре коллекторные щетки и 20 ламелей, и содержащей 20 секторов на роторе, первичные обмотки состояли из нескольких витков проводника, чтобы эффективно проводиться во вращение от 48 вольт постоянного тока при 25 амперах, то есть 1200 Ватт было необходимо для вращения с частотой 1750 оборотов в минуту.

В то же самое время вторичные обмотки состояли из такого числа витков, чтобы эффективно получать на выходе 60 циклов в секунду (путем трансформации и генерирования) при напряжении в 110 вольт и с током в 32 ампера, то есть на выходе можно было получать 3520 Ватт.

Энергией пронизана вся Вселенная, вопрос-как к ней подключиться… Типы генераторов электрической энергии. Электрическая энергия может генерироваться разнообразными методами, самые удобные и практичные мы используем в быту, остальные, возможно, ждут своего часа.

Самый, самый распространённый генератор в мире, это генератор автомобильный, а автомобилей уже больше миллиарда и количество их бодрыми шагами идёт ко второму. Физический принцип работы каждого механического генератора основан на явлении электромагнитной индукции, в случае пересечения проводником линий магнитного поля, в нём возникает электродвижущая сила (ЭДС). ЭДС так же как и напряжение измеряется в вольтах (Международная система единиц).

Принципиальный эффект генерации электрического тока обнаружил и описал английский физик Майкл Фарадей, в 1831 году. Знаменитый учёный заметил, что при прохождении проводника сквозь линии магнитного поля, на его концах возникает напряжение.

Прибор, который построил Фарадей ( диск Фарадея), можно назвать первым электрическим генератором, который из механического движения проводника (диска) в магнитном поле, извлекал электродвижущую силу (ЭДС). Установить, что изолированные проволочные проводники гораздо гораздо эффективней генерируют электрический ток, вращаясь в магнитном поле (или наоборот), уже было вопросом времени.

Генерация переменного тока

Самая распространённая конструкция генератора переменного тока, реализует вращающееся магнитное поле, сквозь неподвижную обмотку статора. Для этого на электромагниты ротора, через контактные кольца, подаётся постоянный ток.

Но для появления напряжения на выводах статора, необходимо ротору придать движение (вращение). Явление, когда подвижное магнитное поле вызывает в проводнике электродвижущую силу, называется электромагнитной индукцией. При вращении магнитное поле ротора поочередно пересекает обмотки (фазы) статора, вызывая в них движение электронов.

Читайте также:  Датчик движения для светодиодного прожектора

Фазы (обмотки) смещенные на статоре, друг относительно друга, на 120 градусов,

позволяют вырабатывать трёхфазный синусоидальный электрический ток. При вращении ротора 3000 оборотов в минуту, то есть 50 оборотов в секунду, получается частота колебаний переменного напряжения- 50 Герц. Но в автомобиле применяется постоянное напряжение.

Для получения постоянного напряжения, в автомобильных электрических генераторах предусмотрен трёхфазный выпрямитель выполненный на шести силовых полупроводниковых диодах. Производители, чтобы защитить электронные узлы автомобиля от повышенного напряжения, применяют вместо диодов стабилитроны.

Стабилитроны, это те же диоды, но до определённого напряжения (25-30 вольт). При достижении предельного напряжения, стабилитроны начинают пропускать ток в обратном направлении, что оберегает электронику автомобиля от всплесков напряжения.

Бесщеточные генераторы

Синхронный электрический генератор обладает конструкционным изъяном, имя ему- щётки. Щётки изнашиваются и искрят при работе. При наличии в среде (или возможном наличии) горючих паров или газов, применение щёточных электрогенераторов иногда недопустимо. Решением стало создание, так называемых трёхмашинных ( бесщёточных) генераторов.

Предвозбудитель, возбудитель и генератор реализованы на одном валу и в одном корпусе. Предвозбудителем является бесщёточный синхронный генератор производящий ЭДС от постоянных магнитов, расположенных на валу.

Полученное напряжение передаётся на статор возбудителя.

Магнитное поле возбудителя индуцирует в обмотке ротора ток, который после выпрямления ( установленным на роторе трёхфазным выпрямителем) подаётся на основную обмотку возбуждения генератора. Со статора снимается полезное напряжение. Ничего не искрит, ничего не истирается. Срок эксплуатации трёхмашинного генератора ограничивается сроком службы электроизоляции и подшипников.

Электрогенераторы

Конструкция и принцип действия бензиновых, дизельных, газовых, инверторных генераторов примерно одинаковый и основан на преобразовании механической энергии в электрическую. Двигатель внутреннего сгорания приводит в движение ротор генератора, который и вырабатывает электрический ток с нужными нам параметрами.

Бензиновый генератор с двухтактным двигателем

Агрегаты данного типа обладают небольшим весом, габаритами, а также небольшой шумностью и стоимостью. Все эти характеристики объясняются тем, что для генераторов двигатели данного типа не делают большой мощности (около киловатта), соответственно и силовая электрическая установка будет небольшой

Особенности системы смазывания и работы двухтактного двигателя, определяют его небольшой ресурс, он вдвое меньше, чем у четырёхтактных собратьев. Специальное масло для двухтактных двигателей необходимо добавлять непосредственно в бензин, а так как срок годности у такой смеси около двух недель, изготовлять её необходимо с учётом этого срока.

Наличие масла в топливной смеси, существенно ухудшает параметры выхлопа и определяет месторасположение (вне помещения) агрегата во время эксплуатации.

Потребление топлива в двигателях данного типа выше , чем у четырёхтактных двигателей на 30-35 процентов. Применение электрогенераторов данного типа обусловлено простотой конструкции, небольшими размерами и малошумностью, что предполагает их использование в качестве переносного источника питания на природе, пикнике и т.д.

Бензиновые генераторы с четырёхтактными двигателями

Все преимущества четырёхтактного двигателя электрогенератора, перед двухтактным, потребитель оплачивает из своего кармана (как обычно). Экономия расхода топлива достигается за счёт использования раздельной системы смазки двигателя, также, это является причиной двукратного увеличения моторесурса.

Вес и габариты некоторых моделей могут достигать внушительных величин, естественно это соответствует возросшей мощности четырёхтактного двигателя внутреннего сгорания и выходных параметров электрогенератора. Электрическая мощность бензиновых генераторов может достигать 15 кВатт.

Сверх этого значения они становятся неконкурентоспособны своим дизельным собратьям. Дизельные электрогенераторы обладают повышенным моторесурсом и способностью к продолжительной непрерывной эксплуатации. Они, также, более экономичны, но характеризуются повышенной шумностью.

Система запуска

Обычно в электрогенераторах реализована возможность механического запуска, а в более крупных моделях предусмотрен запуск при помощи стартера запитанного от аккумулятора. В этих моделях также встроен выпрямитель на 12 вольт (для подзарядки аккумулятора) и вывод на клеммы для потребительского использования.

Электростанции высокого класса оснащаются системой самостоятельного запуска, в случае аварийного отключения электроэнергии.

Инверторные бензиновые генераторы

Обороты генераторов, работающих от двигателей внутреннего сгорания, к сожалению, не являются константой. Они изменяются, в зависимости от электрической нагрузки на генератор. Механическая система стабилизации, через обогащение топливной смеси,

выравнивает скорость вращения приводного вала, а значит и ротора генератора, но о качестве вырабатываемого электротока говорить не приходится.

Скачки напряжения для электроутюга и электрочайника не страшны, но электронная техника посложнее может пострадать. Обычный бензиновый электрогенератор, даже если он работает вхолостую (без нагрузки) потребляет топлива не намного меньше чем под нагрузкой. К тому же, производители прямо предупреждают о недопустимости долгой работы генераторов вхолостую.

Электронный блок устанавливаемый на выход генератора, решает проблему ненадлежащего расхода топлива и улучшения параметров электрического тока. В инверторе переменное напряжение преобразуется в постоянное, а потом снова в переменное, но уже с качественно улучшенными параметрами. При этом электроника управляет оборотами двигателя, существенно экономя топливо. За качество электрического тока и экономию, платить приходится потребителю. Инверторные бензиновые генераторы существенно дороже своих неуправляемых (электроникой) конкурентов.

Разновидности электростанций

При всём своём многообразии, бензогенераторы подразделяются на:

  • бытовые (для непрерывной работы не более 4- х часов в сутки)
  • профессиональные (для непрерывной работы не менее 8- и часов)
  • стационарные (как правило дизельные электростанции)

Класс бытовых электрогенераторов, условно ограничен мощностью в 4 кВатта.

Асинхронные генераторы

Отличаются простотой конструкции и неприхотливостью в эксплуатации.

Ротор асинхронного генератора не обладает обмоткой (короткозамкнут), что положительно сказывается при работе со сварочными аппаратами.

Читайте также:  Дом в стиле шале с панорамными окнами

Синхронные генераторы

Обладают повышенной производительностью ( по сравнению с асинхронными) и качеством электрического тока в условиях меняющейся нагрузки. Синхронные генераторы являются самым распространённым типом генераторов.

Дополнительное оборудование применяемое в генераторах

  • Счётчик моточасов- производит контроль рабочего времени, позволяет планировать проведение регламентных работ.
  • Индикатор падения уровня масла- предотвращает работу двигателя в нештатном режиме (на сухую).
  • Вольтметр- определяет выдаваемое напряжение генератора.
  • Вывод 12 Вольт- позволяет подзаряжать автомобильный аккумулятор.
  • Розетки — две или три розетки для подключения нагрузки защищены автоматом, ток срабатывания которого определяется мощностью генератора.

Количество фаз генератора

При необходимости подключения трёхфазной нагрузки выбор очевиден, для бытового использования представляется проблематичным равномерное распределение нагрузки по всем трём фазам, так как разница не должна превышать 30 процентов.

Выбор мощности

При выборе мощности, следует продумать применение приборов с электродвигателями, пусковой ток которых превышает номинальный в 2-3 раза.

Запас мощности электрогенератора позволит избежать работы агрегата на пределе своих возможностей, что отрицательно сказывается на ресурсе.

Активная и реактивная мощность

Мощность бытовых приборов, в которых применены электродвигатели, правильно высчитывать учитывая реактивную составляющую, так как в обмотках двигателей происходит сдвиг фаз и дополнительные потери электроэнергии. Учитывать коэффициент мощности ( cos Ф ) необходимо для определения реальной

реактивной мощности прибора. Значение коэффициента мощности cos Ф может находиться в пределах от 0,3 до 1. Для простоты расчётов мощность электродвигателей можно принимать увеличенными в полтора раза.

Самоделки из двигателя от стиральной машины:

1. Как подключить двигатель от старой стиральной машины через конденсатор или без него
2. Самодельный наждак из двигателя стиральной машинки
3. Самодельный генератор из двигателя от стиральной машины
4. Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат
5. Гончарный круг из стиральной машины
6. Токарный станок из стиральной машины автомат
7. Дровокол с двигателем от стиральной машины
8. Самодельная бетономешалка

Мотор-генератор своими руками (опыты, видео, принцип работы)

Изобретение относится к области электротехники и электроэнергетики, в частности к способам и оборудованию для генерирования электрической энергии, и может быть использовано в автономных системах электроснабжения, в автоматике и бытовой технике, на авиационном, морском и автомобильном транспорте.

За счет нестандартного способа генерации, и оригинальной конструкции мотора-генератора, режимы генератора и электромотора, объединены в одном процессе, и неразрывно связаны. В результате чего, при подключении нагрузки, взаимодействие магнитных полей статора и ротора образует вращающий момент, который по направлению совпадает с моментом, создаваемым внешним приводом.

Другими словами, при увеличении мощности потребляемой нагрузкой генератора, ротор мотора-генератора начинает ускоряться, и соответственно понижается мощность, потребляемая внешним приводом.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента.

Результаты экспериментов, которые привели к изобретению мотора-генератора.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше, чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента. Эта информация подтолкнула нас на проведение ряда экспериментов с кольцевой обмоткой, результаты которых мы покажем на этой странице. Для экспериментов, на тороидальный сердечник, были намотаны 24шт., не зависимые обмотки, с одинаковым количеством витков.

1) Вначале вес обмотки были включены последовательно, выводы на нагрузку расположены диаметрально. В центре обмотки был расположен постоянный магнит с возможностью вращения.

После того как магнит с помощью привода приводился в движение, подключалась нагрузка и лазерным тахометром измерялись обороты привода. Как и следовало ожидать, обороты приводного двигателя начинали падать. Чем большую мощность потребляла нагрузка, тем сильнее падали обороты.

2) Для лучшего понимания процессов происходящих в обмотке, вместо нагрузки был подключен миллиамперметр постоянного тока.
При медленном вращении магнита, можно наблюдать, какая полярность и величина выходного сигнала, в данном положении магнита.

Из рисунков видно, когда полюсы магнита, находятся напротив выводов обмотки (рис. 4;8), ток в обмотке равен 0. При положении магнита, когда полюсы находятся в центре обмотки, мы имеем максимальное значение тока (рис. 2;6).

3) Нa следующем этапе экспериментов, использовалась только одна половина обмотки. Магнит также медленно вращался, и фиксировались показания прибора.

Показания прибора полностью совпадали с предыдущим экспериментом (рис 1-8).

4) После этого к магниту подключили внешний привод и начали его вращать на максимальных оборотах.

При подключении нагрузки, привод начал набирать обороты!

Другими словами, при взаимодействии полюсов магнита, и полюсов образующихся в обмотке с магнитопроводом, при прохождении через обмотку тока, появился вращающий момент, направленный по ходу вращающего момента созданного приводным двигателем.

Рисунок 1, идет сильное торможение привода при подключении нагрузки. Рисунок 2, при подключении нагрузки привод начинает ускоряться.

5) Что бы понять что происходит, мы решили создать карту магнитных полюсов, которые появляются в обмотках при прохождении через них тока. Для этого была проведена серия экспериментов. Обмотки подключались в разных вариантах, а на концы обмоток подавались импульсы постоянного тока. При этом на пружине был закреплен постоянный магнит, и по очереди располагался рядом с каждой из 24 обмоток.

Читайте также:  Дома в арабском стиле фото

По реакции магнита (отталкивался он или притягивался) была составлена карта проявляющихся полюсов.

Из рисунков видно, как проявлялись магнитные полюсы в обмотках, при различном включении (желтые прямоугольники на рисунках, это нейтральная зона магнитного поля).

При смене полярности импульса, полюсы как и положено менялись на противоположные, по этому разные варианты включения обмоток, нарисованы при одной полярности питания.

6) Па первый взгляд, результаты на рисунках 1 и 5 идентичны.

При более подробном анализе, стало ясно, что распределение полюсов по окружности и «размер» нейтральной зоны довольно сильно отличаются. Сила с которой магнит притягивался или отталкивался от обмоток и магнитопровода показана градиентной заливкой полюсов.

7) При сопоставлении данных экспериментов описанных в пунктах 1 и 4, кроме кардинальной разницы в реакции привода на подключение нагрузки, и существенной разницы в «параметрах» магнитных полюсов, были выявлены и другие отличия. При проведении обоих экспериментов, параллельно нагрузке был включен вольтметр, а последовательно с нагрузкой включался амперметр. Если показания приборов из первого эксперимента (пункт 1), взять за 1, то во втором эксперименте (пункт 4), показание вольтметра так же было равно 1. По показания амперметра составляло 0,005 от результатов первого эксперимента.

8) Исходя из изложенного в предыдущем пункте, логично предположить, если в незадействованной части магнитопровода, сделать немагнитный (воздушный) зазор, то сила тока в обмотке должна увеличиться.

После того как был сделан воздушный зазор, магнит снова подключили к приводному двигателю, и раскрутили на максимальные обороты. Сила тока действительно возросла в несколько раз, и стала составлять примерно 0,5 от результатов эксперимента по пункту 1,
но при этом появился тормозной момент на привод.

9) Способом, который описан в пункте 5, была составлена карта полюсов данной конструкции.

10) Сопоставим два варианта

Не трудно предположить, если увеличить воздушный зазор в магнитопроводе, геометрическое расположение магнитных полюсов по рисунку 2, должно приблизиться к такому расположению как в рисунке 1. А это в свою очередь, должно привести к эффекту ускорения привода, который описан в пункте 4 (при подключении нагрузки, вместо торможения, создается добавочный момент к вращающему моменту привода).

11) После того как зазор в магнитопроводс был увеличен до максимума (до краев обмотки), при подключении нагрузки вместо торможения, привод снова начал набирать обороты.

При этом карта полюсов обмотки с магнитопроводом выглядит так:

На основе предложенного принципа генерации электроэнергии, можно конструировать генераторы переменного тока, которые при повышении электрической мощности в нагрузке, не требуют повышения механической мощности привода.

Принцип работы Мотора Генератора.

Согласно явлению электромагнитной индукции при изменении магнитного потока проходящего через замкнутый контур, в контуре возникает ЭДС.

Согласно правилу Ленца: Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. При этом не имеет значения, как именно магнитный поток, движется по отношению к контуру (Рис. 1-3).

Способ возбуждения ЭДС в нашем моторе-генераторе аналогичен рисунку 3. Он позволяет использовать правило Ленца для увеличения вращающего момента на роторе (индукторе).

1) Обмотка статора
2) Магнитопровод статора
3) Индуктор (ротор)
4) Нагрузка
5) Направление вращения ротора
6) Центральная линия магнитного поля полюсов индуктора

При включении внешнего привода, ротор (индуктор) начинает вращаться. При пересечении начала обмотки магнитным потоком одного из полюсов индуктора в обмотке индуцируется ЭДС.

При подключении нагрузки, в обмотке начинает течь ток и полюса возникшего в обмотках магнитного поля согласно правилу Э. X. Ленца направлены на встречу возбудившего их магнитного потока.
Так как обмотка с сердечником расположена по дуге окружности, то магнитное поле ротора, движется вдоль витков (дуги окружности) обмотки.

При этом в начале обмотки согласно правилу Ленца, возникает полюс одинаковый с полюсом индуктора, а на другом конце ротивоположный. Так как одноименные полюса отталкиваются, а противоположные притягиваются, индуктор стремится принять положение, которое соответствует действию этих сил, что и создает добавочный момент, направленный по ходу вращения ротора. Максимальная магнитная индукция в обмотке достигается в момент, когда центральная линия полюса индуктора находится напротив середины обмотки. При дальнейшем движении индуктора, магнитная индукция обмотки уменьшается, и в момент выхода центральной линии полюса индуктора за пределы обмотки, равна нулю. В этот же момент, начало обмотки начинает пересекать магнитное поле второго полюса индуктора, и согласно правилам, описанным выше, край обмотки от которого начинает отдаляться первый полюс начинает его отталкивать с нарастающей силой.

Рисунки:
1) Нулевая точка, полюсы индуктора (ротора) симметрично направлены на разные края обмотки в обмотке ЭДС=0.
2) Центральная линия северного полюса магнита (ротора) пересекла начало обмотки, в обмотке появилась ЭДС, и соответственно проявился магнитный полюс одинаковый с полюсом возбудителя (ротора).
3) Полюс ротора находится в центре обмотки, и в обмотке максимальное значение ЭДС.
4) Полюс приближается к концу обмотки и ЭДС снижается до минимума.
5) Следующая нулевая точка.
6) Центральная линия южного полюса входит в обмотку и цикл повторяется (7;8;1).

Видео-ролик первого эксперимента:

Видео-ролик второго эксперимента:

Комментировать
386 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector