No Image

Двухполупериодный выпрямитель принцип работы

СОДЕРЖАНИЕ
412 просмотров
12 декабря 2019

К категории выпрямителей относятся различные устройства, с помощью которых переменный входной электрический ток преобразуется на выходе в постоянный ток. В большинстве таких приборов невозможно создать постоянный ток и напряжение. В них осуществляется создание однонаправленного пульсирующего напряжения и тока, где сглаживание пульсаций выполняется с помощью специальных фильтров.

Среди множества подобных приборов, наиболее эффективной считается схема двухполупериодного выпрямителя. Данные устройства имеют различные технические характеристики, что позволяет применять их практически при любых значениях токов.

Свойства двухполупериодного выпрямителя

Основным свойством этих устройств является протекание электрического тока через нагрузку за оба полупериода в одном и том же направлении.

В приборах такого типа используются, в основном, мостовые или полумостовые схемы. В последнем случае однофазный ток выпрямляется с использованием специального трансформатора. В качестве вывода используется средняя точка вторичной обмотки, а количество элементов, выпрямляющих ток – в два раза меньше. В настоящее время полумостовая схема используется довольно редко из-за высокой металлоемкости и высокого активного внутреннего сопротивления, с большими потерями при нагревании трансформаторных обмоток.

Чаще всего используются двухполупериодные устройства, в схемах которых имеется сразу два вентиля. Электрический ток в нагрузке всегда протекает в одном и том же направлении. В результате, выпрямление тока происходит с участием двух полупериодов напряжения. Благодаря высокой частоте пульсаций, фильтрация выпрямляемого напряжения существенно облегчается.

Двухполупериодные выпрямители получили широкое распространение во многих радиоэлектронных устройствах, обеспечивая их нормальное питание. Возможность преобразования постоянного тока из одного напряжения в другое, дает возможность создавать в схемах питания различные напряжения при одном и том же источнике энергии.

Распространенные схемы двухполупериодных выпрямителей

Данные схемы лежат в основе многих источников питания, применяемых в радиоэлектронике и других технических областях. Таким образом, обеспечивается постоянное напряжение питания электронных устройств, технологических процессов, электромашинных приводов механизмов. Чтобы правильно эксплуатировать выпрямители, необходимо хорошо знать их основные свойства.

Двухполупериодный однофазный выпрямитель с выводом от средней точки

Основными преимуществами данной схемы считается более высокий коэффициент эксплуатации вентилей по току, сниженная расчетная мощность трансформатора, низкий коэффициент, определяющий пульсацию выпрямленного напряжения.

Однако в этой схеме вентили недостаточно используются по напряжению. Само устройство обладает высоким обратным напряжением, поступающим на выпрямительные диоды. В схеме используется более сложная конструкция трансформатора.

Двухполупериодный однофазный мостовой выпрямитель

Главным преимуществом мостового выпрямителя считается повышенный коэффициент применения вентилей по напряжению. В схеме используется трансформатор с меньшей расчетной мощностью и очень простой конструкцией. Данные выпрямители нашли широкое применение в установках малой и средней мощности.

Главным недостатком мостовой схемы является необходимость строгой симметрии напряжений на каждой обмотке и применение двух обмоток вместо одной. На диодах возникает большое обратное напряжение. В сравнении с предыдущей схемой выпрямителя, требуется в два раза больше диодов, однако значение общего сопротивления постоянному току во многих случаях оказывается меньше, чем сопротивление выпрямителя со средней точкой.

Двухполупериодный выпрямитель с удвоением напряжения

Данная схема используется в случае возникновения проблем с намоткой вторичной обмотки, состоящей из множества витков, или при обмотке действующего трансформатора с недостаточным напряжением. В схеме удвоения применяется нагрузочная характеристика с круто падающим графиком. Пульсации выпрямленного тока сглаживаются конденсаторами.

Серьезным недостатком считается возможный взрыв электролитического конденсатора под действием переменного напряжения в случае пробоя одного из диодов. Представленная схема не может быть использована для получения напряжения на выходе более 200-300В из-за возможного пробоя изоляции между нитью накала и катодами в кенотроне.

Двухполупериодный выпрямитель с умножением напряжения

Представленная схема дает возможность получать высокое напряжение без использования высоковольтного трансформатора. В ней используются конденсаторы с рабочим напряжением 2Ет, независимо от того, во сколько раз умножилось значение напряжения.

Читайте также:  Драйвера для дневной лампы

Данная схема двухполупериодного выпрямителя имеет недостаток в виде разрядки конденсаторов при включении нагрузочного сопротивления. С уменьшением сопротивления нагрузки увеличивается скорость разрядки конденсаторов, снижается их напряжение. Использование этой схемы нерационально при незначительных сопротивлениях нагрузок.

Выпрямительные схемы

Выпрямление электрических колебаний, это процесс, в результате которого переменное входное колебание преобразуется в выходное колебание только одного знака (рисунок 1.5). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.

Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.

Для выпрямления применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны, кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения, значений выпрямленных напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.

Название “выпрямитель” используется, прежде всего, для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемые в процессе выпрямления.

Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рисунке 1.6.

Диод, включенный таким образом, что приводит ток только при положительных полупериодах входного колебания, т.е. когда напряжение на его аноде больше потенциала катода. Среднее значение колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением и максимальным значением , равно

.

Например, при выпрямлении напряжения с действующим значением , после выпрямления получаем напряжение .

В отрицательный полупериод диод не проводит ток, и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменение направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные.

Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).

Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак.

Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рисунке 1.7.

В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает.

При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, полученого на выходе двухполупериодного выпрямителя в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.

Технические параметры выпрямителя:

Коэффициент пульсаций выпрямителя называется отношение максимального значения переменной составляющей напряжения на выходе выпрямителя к значению его постоянной составляющей на этом выходе. В большинстве применений желательно, чтобы коэффициент пульсаций был как можно меньше. Уменьшение пульсаций достигается путем применения соответствующих фильтров.

Коэффициент использования трансформатора в выпрямительной схеме, определяется как отношение двух мощностей: выходной мощности постоянного тока и номинальной мощности вторичной обмотки трансформатора.

Коэффициент полезного действия, это параметр, характеризующий эффективность схемы выпрямителя при преобразовании переменного напряжения в постоянное. КПД выпрямителя выражается отношением мощности постоянного тока, выделяемой в нагрузке, к входной мощности переменного тока. Коэффициент полезного действия определяется для резистивной нагрузки.

Частотная пульсация выпрямителя, это основная частота переменной составляющей, существующей на выходе выпрямителя. В случае однополупериодного выпрямителя частота пульсаций равна частоте входного колебания. Фильтрация пульсаций тем проще, чем выше частота пульсации.

Читайте также:  Вольт амперная характеристика симистора

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10617 — | 7341 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Схема однополупериодный выпрямитель

Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.

Объяснение работы диодного моста

Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц405

Трехфазные выпрямители

Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова может использоваться как "звезда-Ларионов” и "треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи — AKV.

Обсудить статью ВЫПРЯМИТЕЛИ

Предлагается схема с фотографиями готовой конструкции ручного металлодетектора.

Читайте также:  Дом в стиле шале с панорамными окнами

ДРАГМЕТАЛЛЫ В ПОЛУПРОВОДНИКОВЫХ РАДИОДЕТАЛЯХ

Указано содержание золота и серебра в полупроводниках — диодах, тиристорах, оптронах.

ДРАГОЦЕННЫЕ ДЕТАЛИ

Некоторые радиодетали, содержащие драгметаллы — золото, серебро и платину.

ПРЕОБРАЗОВАТЕЛЬ 12-220

Схема проверенного преобразователя напряжения 12В в 220, на основе трансформатора компьютерного БП.

Комментировать
412 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector