No Image

Двунаправленный инвертор принцип работы

СОДЕРЖАНИЕ
562 просмотров
12 декабря 2019

Двунаправленный инвертор серии «ПАПИР» выпускается в диапазоне мощностей от 1 до 5 МВт и имеет широкий спектр применения в различных системах энергообеспечения потребителей с переходом между постоянным и переменным током. Двунаправленный инвертор является одним из двух главных элементов любой системы хранения энергии, построенной на литий-ионных аккумуляторах.

Инвертор напряжения с широтно-импульсной модуляцией и активным выпрямителем на основе мощных IGBT-транзисторов. В роли транзисторов используются силовые инверторные сборки фирмы SEMIKRON, обладающие повышенной стойкостью к жестким условиям окружающей среды и термоциклированию.

Микроконтроллеры инвертора серии «ПАПИР» построены на основе современного процессора ARM STMicroelectronicsс производительностью 180 миллионов операций в секунду. Система управления инвертором обеспечивает высокое качество регулирования с точностью поддержания выходной частоты 0,1%. Преобразователь поддерживает векторное (с энкодером и без) и скалярное (без энкодера) виды управления электродвигателем.

Для преобразования постоянного тока в переменный применяют специальные электронные силовые устройства, называемые инверторами. Чаще всего инвертор преобразует постоянное напряжение одной величины в переменное напряжение другой величины.

Таким образом, инвертор — это генератор периодически изменяющегося напряжения, при этом форма напряжения может быть синусоидальной, приближенной к синусоидальной или импульсной . Инверторы применяют как в качестве самостоятельных устройств, так и в составе систем бесперебойного электроснабжения (UPS).

В составе источников бесперебойного питания (ИБП), инверторы позволяют, например, получить непрерывное электроснабжение компьютерных систем, и если в сети напряжение внезапно пропадет, то инвертор мгновенно начнет питать компьютер энергией, получаемой от резервного аккумулятора. По крайней мере, пользователь успеет корректно завершить работу и выключить компьютер.

В более крупных устройствах бесперебойного электроснабжения применяются более мощные инверторы с аккумуляторами значительной емкости, способные автономно питать потребители часами, независимо от сети, а когда сеть снова вернется в нормальное состояние, ИБП автоматически переключит потребители напрямую к сети, а аккумуляторы начнут заряжаться.

В современных технологиях преобразования электроэнергии инвертор может выступать лишь промежуточным звеном, где его функция — преобразовать напряжение путем трансформации на высокой частоте (десятки и сотни килогерц). Благо, на сегодняшний день решить такую задачу можно легко, ведь для разработки и конструирования инверторов доступны как полупроводниковые ключи, способные выдерживать токи в сотни ампер, так и магнитопроводы необходимых параметров, и специально разработанные для инверторов электронные микроконтроллеры (включая резонансные).

Требования к инверторам, как и к другим силовым устройствам, включают: высокий КПД, надежность, как можно меньшие габаритные размеры и вес. Также необходимо чтобы инвертор выдерживал допустимый уровень высших гармоник во входном напряжении, и не создавал неприемлемо сильных импульсных помех для потребителей.

В системах с «зелеными» источниками электроэнергии (солнечные батареи, ветряки) для подачи электроэнергии напрямую в общую сеть, применяют Grid-tie – инверторы, способные работать синхронно с промышленной сетью.

В процессе работы инвертора напряжения, источник постоянного напряжения периодически подключается к цепи нагрузки с чередованием полярности, при этом частота подключений и их продолжительность формируется управляющим сигналом, который поступает от контроллера.

Контроллер в инверторе обычно выполняет несколько функций: регулировка выходного напряжения, синхронизация работы полупроводниковых ключей, защита схемы от перегрузки. Принципиально инверторы делятся на: автономные инверторы (инверторы тока и инверторы напряжения) и зависимые инверторы (ведомые сетью, Grid-tie и т.д.)

Полупроводниковые ключи инвертора управляются контроллером, имеют обратные шунтирующие диоды. Напряжение на выходе инвертора, в зависимости от текущей мощности нагрузки, регулируется автоматическим изменением ширины импульса в блоке высокочастотного преобразователя, в простейшем случае это ШИМ (широтно-импульсная модуляция).

Полуволны выходного низкочастотного напряжения должны быть симметричными, чтобы цепи нагрузки ни в коем случае не получили значительной постоянной составляющей (для трансформаторов это особенно опасно), для этого ширина импульса НЧ-блока (в простейшем случае) делается постоянной.

В управлении выходными ключами инвертора, применяется алгоритм, обеспечивающий последовательную смену структур силовой цепи: прямая, короткозамкнутая, инверсная.

Так или иначе, величина мгновенной мощности нагрузки на выходе инвертора имеет характер пульсаций с удвоенной частотой, поэтому первичный источник должен допускать такой режим работы, когда через него текут пульсирующие токи, и выдерживать соответствующий уровень помех (на входе инвертора).

Читайте также:  Анализатор коррозионной активности грунта модернизированный акаг

Если первые инверторы были исключительно механическими, то сегодня есть множество вариантов схем инверторов на полупроводниковой базе, а типовых схем всего три: мостовая без трансформатора, двухтактная с нулевым выводом трансформатора, мостовая с трансформатором.

Мостовая схема без трансформатора встречается в устройствах бесперебойного питания мощностью от 500 ВА и в автомобильных инверторах. Двухтактная схема с нулевым выводом трансформатора используется в маломощных ИБП (для компьютеров) мощностью до 500 ВА, где напряжение на резервном аккумуляторе составляет 12 или 24 вольта. Мостовая схема с трансформатором применяется в мощных источниках бесперебойного питания (на единицы и десятки кВА).

Форма напряжения на выходе

В инверторах напряжения с прямоугольной формой на выходе, группа ключей с обратными диодами коммутируется так, чтобы получить на нагрузке переменное напряжение и обеспечить контролируемый режим циркуляции в цепи реактивной энергии.

За пропорциональность выходного напряжения отвечают: относительная длительность управляющих импульсов либо сдвиг фаз между сигналами управления группами ключей. В неконтролируемом режиме циркуляции реактивной энергии, потребитель влияет на форму и величину напряжения на выходе инвертора.

В инверторах напряжения со ступенчатой формой на выходе, предварительный высокочастотный преобразователь формирует однополярную ступенчатую кривую напряжения, грубо приближенную по своей форме к синусоиде, период которой равен половине периода выходного напряжения. Затем мостовая НЧ-схема превращает однополярную ступенчатую кривую в две половинки разнополярной кривой, грубо напоминающей по форме синусоиду.

В инверторах напряжения с синусоидальной (или почти синусоидальной) формой на выходе, предварительный высокочастотный преобразователь генерирует постоянное напряжение близкое по величине к амплитуде будущей синусоиды на выходе.

После этого мостовая схема формирует из постоянного напряжения переменное низкой частоты, путем многократной ШИМ, когда каждая пара транзисторов на каждом полупериоде формирования выходной синусоиды открывается несколько раз на время, изменяющееся по гармоническому закону. Затем НЧ-фильтр выделяет из полученной формы синус.

Схемы предварительных ВЧ- преобразователей в инверторах

Простейшие схемы предварительного высокочастотного преобразования в инверторах являются автогенераторными. Они довольно просты в плане технической реализации и достаточно эффективны на малых мощностях (до 10-20 Вт) для питания нагрузок не критичных к процессу подачи энергии. Частота автогенераторов не более 10 кГц.

Положительная обратная связь в таких устройствах получается от насыщения магнитопровода трансформатора. Но для мощных инверторов такие схемы не приемлемы, поскольку потери в ключах возрастают, и КПД получается в итоге низким. Тем более, любое КЗ на выходе срывает автоколебания.

Более качественные схемы предварительных высокочастотных преобразователей — это обратноходовые (до 150 Вт), двухтактные (до 500 Вт), полумостовые и мостовые (более 500 Вт) на ШИМ контроллерах, где частота преобразования достигает сотен килогерц.

Типы инверторов, режимы работы

Однофазные инверторы напряжения подразделяются на две группы: с чистым синусом на выходе и с модифицированной синусоидой. Большинство современных приборов допускают упрощенную форму сетевого сигнала (модифицированную синусоиду).

Чистая же синусоида важна для приборов, у которых на входе есть электродвигатель или трансформатор, либо если это специальное устройство, работающее только с чистой синусоидой на входе.

Трёхфазные инверторы обычно используются для создания трёхфазного тока для электродвигателей, например, для питания трёхфазного асинхронного двигателя. При этом обмотки двигателя непосредственно подключаются к выходу инвертора. По мощности инвертор выбирают исходя из пикового значения оной для потребителя.

Вообще, существует три рабочих режима инвертора: пусковой, длительный и режим перегрузки. В пусковом режиме (заряд емкости, пуск холодильника) мощность может на долю секунды двукратно превысить номинал инвертора, это допустимо для большинства моделей. Длительный режим — соответствующий номиналу инвертора. Режим перегрузки — когда мощность потребителя в 1,3 раза превышает номинал — в таком режиме средний инвертор может работать примерно полчаса.

Инверторные устройства используются в самых различных областях. В большинстве случаев, это однофазные приборы, работающие по классическим схемам. Однако, возникают ситуации, когда необходимо обеспечить электроэнергией асинхронный двигатель от аккумуляторной батареи или просто получить трехфазный ток для специфических нужд. И здесь на выручку приходит трехфазный инвертор с увеличенным числом электронных управляемых ключей, преобразующий постоянный ток в трехфазный переменный с требуемыми характеристиками.

Читайте также:  Жидкость в комплекте к защитному стеклу

Где применяется

Область применения трехфазных инверторов достаточно большая, а в некоторых случаях без них просто невозможно обойтись. Управление электродвигателями будет гораздо эффективнее, когда используются модифицированные современные трехфазные инверторные устройства. Они включаются в общую схему с одно- и трехфазными асинхронными двигателями, коллекторными агрегатами, а также с трехфазными двигателями постоянного тока.

Для управления разными типами двигателей используются свои режимы, поддерживаемые соответствующим программным обеспечением. Это дает возможность подключать практически любые двигатели в обмотках которых имеется от 1 до 3 фаз. В виде исключения можно отметить конструкцию биполярных двухфазных шаговых двигателей, оборудованных двумя независимыми обмотками.

В состав комплектующих такого инвертора входит основная плата управления, входы и выходы питания, а также интерфейс для ввода необходимых данных и вывода текущих показаний на дисплей или табло. Довольно часто управления осуществляется с помощью компьютера. Подключение инвертора выполняется через специальный разъем, установленный на плате.

В современных инверторах управления предусмотрен демонстрационный режим, при котором поочередно запускается показ основных функций – пуска и остановки, изменения скорости и реверса. Для переключений между функциями предусмотрены 4 кнопки, расположенные на плате.

Разновидности трехфазных инверторов

По своим параметрам, характеристикам и предназначению все виды преобразователей можно условно разделить на несколько групп.

В первую очередь, они могут быть автономными или зависимыми. В первом случае постоянный ток преобразуется в переменный, где частоту определяет система управления, а характеристики выходного напряжения тесно связаны с параметрами нагрузки. Зависимые устройства выдают ток, определяемый частотой местной сети, с постоянными значениями. В автономных приборах возможны плавные изменения напряжения от нуля до наибольшей допустимой величины. Поэтому такие инверторы чаще всего используются в различных схемах.

Существует дополнительная классификация автономных инверторов в соответствии с его схемой, способами принудительной коммутации, параметрами нагрузки и источников питания. Они могут быть автономными инверторами тока – АИТ или напряжения – АИН, а также резонансными – АИР.

В соответствии с количеством токовых коммутаций, трехфазный инвертор бывает одно- или двухступенчатым. В первом случае ток нагрузки сразу поступает к тиристору, включающемуся в работу, а во втором происходит изначальное переключение нагрузки на вспомогательную цепь, и лишь потом она переходит в основную. Если в схеме используются тиристоры, рассчитанные только на одну операцию, в нее могут быть дополнительно включены узлы принудительной коммутации.

Как работает 3-х фазный инвертор

В состав силовой части трехфазного инвертора входят транзисторные ключи с маркировкой от VT1 до VT6 в количестве шести элементов и диоды обратного тока VD1–VD6, также шесть штук. Диоды соединяются в общий мост и подключаются параллельно с источником питания.

Силовая трёхфазная цепь инверторов может быть построена разными способами. При постоянной структуре цепи, подача управляющих сигналов происходит одновременно сразу к трем силовым транзисторам. Таким образом, ее структура остается неизменной. В случае использования переменной структуры, количество транзисторов для подачи управляющих сигналов нередко бывает менее трех.

Продолжительность переключений, выполняемых транзисторными ключами и частота напряжения на выходе, зависит от используемой системы управления. В интервале, включающем в себя один период, переключения на выходе транзисторов анодной и катодной групп может происходить от одного до множества раз.

Конфигурация тока на выходе получается в соответствии с характеристиками нагрузки. Если нагрузка активно-индуктивная, получается форма в виде ломаной кривой, разделенной на четыре части, расположенные на половине периода. Эффект от токовой нагрузки определяется интегрированием наиболее характерных участков токовой кривой. Необходимая форма нагрузки, в том числе и синусоидальная, получается при многократном включении и отключении управляемых вентилей в пределах одного периода.

Регулировка выходного напряжения в инверторе осуществляется при помощи широтно-импульсной модуляции – ШИМ. Сформированная модуляция в виде прямоугольника, получила название широтно-импульсного регулирования – ШИР. Такое регулирование выходного напряжения выполняется за счет изменяющейся продолжительности подключения нагрузки к источнику питания. Данная схема применяется в момент паузы между импульсами, когда происходит запирание двух одинаковых силовых транзисторов.

Читайте также:  Вещество которое намагничивается в магнитном поле называется

В случае групповых переключений в нагрузочном напряжении возникает определенная пауза. Это происходит при изменении током своего знака в тот момент, когда два транзистора начинают запираться. Если же ток к этому времени не изменит своего знака или нагрузка окажется слишком продолжительной, то формирования паузы в напряжении на выходе не получится. При использовании ШИР, структура тока и напряжения на выходе в диапазоне малых частот и напряжений, значительно ухудшается. Для того чтобы избежать этого негативного явления, ШИР приходится выполнять на действующих несущих частотах.

Схема подключения

Подключение трехфазного инвертора в качестве примера можно рассмотреть в общей связке с электродвигателем. На представленном ниже рисунке обозначен двигатель М, работающий под управлением ключей V1 – V6. Все полупроводники для более наглядного отображения представлены как обычные механические контакты. Для питания используется постоянное напряжение Ud, поступающее из выпрямителя, не отмеченного на схеме. Ключи 1, 3, 5 относятся к верхним, а три ключа 2, 4, 6 – к нижним.

Верхние и нижние ключи никогда не открываются одновременно, во избежание короткого замыкания. Схема будет нормально работать, когда нижний ключ открывается, а верхний к этому времени уже находится в закрытом состоянии. Для формирования этой паузы используются контроллеры.

Продолжительность паузы должна гарантировать, чтобы силовые транзисторы закрывались своевременно. При недостаточности этого временного промежутка, верхний и нижний ключи могут одновременно открыться на очень короткое время. Это крайне нежелательно и не должно происходить систематически, поскольку выходные транзисторы сильно нагреваются и быстро выйдут из строя. Подобная ситуация известна как сквозные токи.

Существует гальваническая связь между нижними и верхними ключами и с управляющим устройством. Подача сигнала управления выполняется через резисторы непосредственно к составному транзистору, выполняющему функции драйвера нижнего ключа. У верхних ключей отсутствует гальваническая связь с элементом управления и с общим проводником. Поэтому для более эффективного управления к верхнему составному транзистору помимо драйвера дополнительно устанавливается оптрон. Питание верхних ключей производится от отдельных выпрямителей, каждый из которых подключен к собственной обмотке трансформатора.

Различия между одно- и трехфазными инверторами

Существуют принципиальные отличия однофазного от трехфазного инвертора. В основном они связаны с их конструктивными особенностями. Это наглядно видно на примере устройств, используемых с солнечными батареями. Схема однофазного инвертора использует 1 или 2 трекера МРРТ, выполняющих слежение за максимальной отметкой мощности панели.

Далее в цепь включается инвертор, выполняющий преобразование тока и синхронизирующий его с сетью. Электроэнергия, полученная от этого инвертора, поступает непосредственно в сеть. К каждому трекеру подключается своя солнечная панель. При наличии двух трекеров можно подключить на выбор 1 или сразу 2.

Трехфазный инвертор напряжения может иметь в своей схеме от 1 до 4 трекеров, в зависимости от мощности каждого преобразователя. Они также выполняют слежение за точкой максимальной мощности и направляют постоянный ток от солнечной панели к входу инвертора. В свою очередь, преобразователь соединяется с сетевыми фазами и синхронизирует их сдвиг на все 3 фазы.

Таким образом, основное отличие между обоими устройствами заключается в разнице распределения полученной энергии. Распределение электричества трехфазным прибором осуществляется равномерно между всеми фазами. Если же для этой цели используется три однофазных инвертора, то выходная мощность каждого из них будет колебаться в соответствии с мощностью, выдаваемой солнечной панелью.

Довольно часто возникает вопрос, что выгоднее использовать, одно- или трехфазный инвертор? Решение принимается индивидуально, исходя из конкретных условий эксплуатации. Несмотря на 1 корпус вместо 3-х, он может оказаться слишком дорогим, поэтому сравнение нужно делать по тем или иным известным моделям. То же самое касается VHHN-трекеров, количества силовых ключей и других важных компонентов.

Комментировать
562 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector