No Image

Газовая турбина для выработки электроэнергии

СОДЕРЖАНИЕ
113 просмотров
12 декабря 2019

В автономной генерации — малой энергетике в последнее время значительное внимание уделяется газовым турбинам различной мощности. Электростанции на базе газовых турбин используются как основной или резервный источник электричества и тепловой энергии для объектов производственного или бытового назначения. Газовые турбины в составе электростанций предназначены для эксплуатации в любых климатических условиях России. Области применения газовых турбин практически не ограничены: нефтегазодобывающая промышленность, промышленные предприятия, структуры ЖКХ.

Положительным фактором использования газовых турбин в сфере ЖКХ является то, что содержание вредных выбросов в выхлопных газах NOх и CO находится на уровне 25 и 150 ppm соответственно (у поршневых установок эти значения гораздо больше), что позволяет устанавливать электростанцию рядом с жилой застройкой. Использование газовых турбин в качестве силовых агрегатов электростанций позволяет избежать строительства высоких дымовых труб.

В зависимости от потребностей газовые турбины комплектуется паровыми или водогрейными котлами–утилизаторами, что позволяет получать от электростанции либо пар (низкого, среднего, высокого давления) для технологических нужд, либо горячую воду (ГВС) со стандартными температурными значениями. Можно получать пар и горячую воду одновременно. Мощность тепловой энергии, производимой электростанцией на базе газовых турбин, как правило, в два раза превышает электрическую.

На электростанции с газовыми турбинами в такой конфигурации коэффициент использования топлива возрастает до 90%. Высокая эффективность использования газовых турбин в качестве силовых агрегатов обеспечивается при длительной работе с максимальной электрической нагрузкой. При достаточно высокой мощности газовых турбин существует возможность совокупного использования паровых турбин. Эта мера позволяет существенно повысить эффективность использования электростанции, увеличивая электрический КПД до 53%.

Сколько стоит электростанция на базе газовых турбин? Какова её полная цена? Что входит в стоимость «под ключ»?

Автономная тепловая электростанция на базе газовых турбин имеет массу дополнительного дорогостоящего, но зачастую, просто необходимого оборудования (пример из жизни – реализованный проект). С использованием первоклассного оборудования стоимость электростанции подобного уровня, «под ключ», не превышает 45000 — 55000 рублей за 1 кВт установленной электрической мощности. Конечная цена электростанции на основе газовых турбин зависит от конкретных задач и нужд потребителя. В стоимость входят проектные, строительные и пусконаладочные работы. Сами газовые турбины, как силовые агрегаты, без дополнительного оборудования, в зависимости от компании-производителя и мощности, стоят от 400 до 800 долларов за 1 кВт.

Для получения информации о стоимости строительства электростанции или ТЭС в конкретном Вашем случае, необходимо отправить в нашу компанию заполненный опросный лист. После этого, по истечении 2–3 дней заказчик-клиент получает предварительное технико-коммерческое предложение — ТКП (краткий пример). На основании ТКП заказчиком принимается окончательное решение о строительстве электростанции на базе газовых турбин. Как правило, до принятия решения клиент посещает уже существующий объект, чтобы воочию увидеть современную электростанцию и «потрогать всё руками». Непосредственно на объекте заказчик получает ответы на имеющиеся вопросы.

За основу строительства электростанций на базе газовых турбин часто берется концепция блочно–модульного построения. Блочно-модульное исполнение обеспечивает высокий уровень заводской готовности газотурбинных электростанций и уменьшает сроки строительства объектов энергетики.

Газовые турбины – немного арифметики по себестоимости производимой энергии

Сколько стоит один киловатт электроэнергии, произведенный газовыми турбинами, и что потребитель получает бесплатно?

Для производства 1 кВт электричества газовые турбины потребляют всего 0,29–0,37 м³/час газового топлива. При сжигании одного кубического метра газа, газовые турбины вырабатывают 3 кВт электричества и 4–6 кВт тепловой энергии. С ценой (усредненной) на природный газ в 2011 году 3 руб. за 1 м³, себестоимость 1 кВт электроэнергии полученной от газовой турбины, равна, приблизительно, 1 рублю. Дополнительно к этому потребитель получает 1,5–2 кВт бесплатной тепловой энергии!

При автономном энергоснабжении от электростанции на основе газовых турбин себестоимость производимой электроэнергии и тепла в 3–4 раза ниже действующих по стране тарифов, и это без учета высокой стоимости подключения к государственным электросетям (60 000 рублей за 1 кВт в Московской области, 2011 год).

Строительство автономных электростанций на основе газовых турбин позволяет получить значительную экономию денежных средств за счет исключения издержек на строительство и эксплуатацию дорогостоящих линий электропередач (ЛЭП), Электростанции на базе газовых турбин могут значительно повысить надежность электрического, теплового снабжения как отдельных предприятий или организаций, так и регионов в целом.
Степень автоматизации электростанции на основе газовых турбин позволяет отказаться от большого количества обслуживающего персонала. Во время эксплуатации газовой электростанции ее работу обеспечивают всего три человека: оператор, дежурный электрик, дежурный механик. При возникновении аварийных ситуаций для обеспечения безопасности персонала, сохранности систем и агрегатов газовой турбины предусмотрены надежные системы защиты.

Читайте также:  Звонки своими руками схемы

Принцип работы газовых турбин

Атмосферный воздух через воздухозаборник[1], оборудованный системой фильтров (на схеме не показаны) подается на вход многоступенчатого осевого компрессора[2]. Компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания[3]. В это же время в камеру сгорания турбины через форсунки подается и определенное количество газового топлива. Топливо и воздух перемешиваются и воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины[4]. Часть полученной энергии расходуется на сжатие воздуха в компрессоре[2] турбины. Остальная часть работы передаётся на электрический генератор через ось привода[7]. Эта работа является полезной работой газовой турбины. Продукты сгорания, которые имеют температуру порядка 500-550 °С, выводятся через выхлопной тракт[5] и диффузор турбины[6], и могут быть далее использованы, например, в теплоутилизаторе, для получения тепловой энергии.

Газовые турбины, как двигатели, имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.

В качестве топлива газовой турбины могут использоваться: керосин, дизельное топливо, газ.

Газовые турбины – преимущества силовых агрегатов для автономных электростанций средней и высокой мощности

Одними из преимуществ современных газовых турбин является длительный жизненный цикл — моторесурс (полный до 200 000 часов, до капитального ремонта 25000–60000 часов).

Современные газовые турбины отличаются высокой надежностью. Есть данные о непрерывной работе некоторых агрегатов в течение нескольких лет.

Многие поставщики газовых турбин производят капитальный ремонт оборудования на месте, производя замену отдельных узлов без транспортировки на завод-изготовитель, что существенно снижает временные затраты.

Возможность длительной работы в любом диапазоне мощностей от 0 до 100%, отсутствие водяного охлаждения, работа на двух видах топлива, — все это делает газовые турбины востребованными силовыми агрегатами для современных автономных электростанций.

Наиболее эффективно применение газовых турбин при средних мощностях электростанций, а на мощностях свыше 30 МВт — выбор очевиден.

Автор: Прокопович В. С. — эксперт, специалист по маркетингу и продажам в сфере промышленного оборудования

Довольно часто возникают ситуации, когда некоторые промышленные и хозяйственные объекты вынужденно располагаются на больших расстояниях от основных электрических сетей. В таких случаях питание подается с помощью передвижных и стационарных установок. В этом списке широко используется газотурбинная электростанция, представляющая собой высокотехнологичную современную конструкцию, обладающую высоким коэффициентом полезного действия. Установки этого типа успешно генерируют электрическую и тепловую энергию, обеспечивая нормальное функционирование закрепленных за ними объектов.

Типовая схема агрегата

Стандартная газотурбинная установка представляет собой тепловую машину, где используется теплоноситель, находящийся в газообразном состоянии, нагретый до высокой температуры. В результате определенных процессов, которые будут рассмотрены ниже, его энергия превращается в механическую.

Конструкция такой электростанции состоит из следующих частей: компрессора, камеры сгорания и самой газовой турбины. Взаимодействие этих компонентов и управление ими в процессе работы обеспечивается специальными вспомогательными системами, входящими в конструкцию установки. Газотурбинная установка и электрический генератор образуют в совокупности газотурбинный агрегат. Мощностью от нескольких десятков киловатт до показателей, измеряемых в мегаваттах. Электростанция, в зависимости от целевого назначения и количества потребителей, имеет одну или несколько газотурбинных установок.

Сама газотурбинная установка разделяется на две части, размещенные в общем корпусе: газогенератор и силовая турбина. Газогенератор состоит из камеры сгорания и турбокомпрессора. Именно здесь создается газовый поток с высокой температурой, оказывающий воздействие на лопатки турбины. Выхлопные газы утилизируются в теплообменнике, и одновременно производят нагрев паровых или водогрейных котлов. Газотурбинные установки могут работать на жидком или газообразном топливе. В стандартном рабочем режиме используется газ, а в критических ситуациях установка автоматически переходит на жидкое топливо.

В нормальных условиях ГТЭС осуществляет комбинированное производство электричества и тепловой энергии. Как правило, они работают в базовом режиме, но при необходимости успешно перекрывают пиковые нагрузки. Вырабатываемое тепло, в количественном отношении существенно выше, чем производимое обычными поршневыми устройствами.

Как работает газотурбинная установка

По сравнению с переносными бензиновыми или дизельными электростанциями, газотурбинные установки имеют более сложную конструкцию и принципиальную схему. Тем не менее, основная задача у тех и других агрегатов совершенно одинаковая: преобразование исходного топлива в электрическую энергию.

Преимуществом газотурбинных установок является возможность дополнительно вырабатывать тепло.

Работа агрегатов этого типа происходит в следующем алгоритме:

  • Газ, поступающий в качестве топлива, вначале воспламеняется, а затем переходит в стадию горения. Образуется газовый поток с высокой температурой, представляющий собой тепловую энергию.
  • Попадая в турбину, раскаленный газ начинает вращать вал, создавая тем самым механическую энергию.
  • С вала турбины вращательный момент передается на ротор генератора, который начинает вырабатывать уже электрическую энергию. Далее она уходит к трансформатору, и пройдя через него, поступает к потребителям.
Читайте также:  Держатель для телефона в авто на руль

Газ в турбинный двигатель поступает непрерывным потоком. Вначале воздух сжимается компрессором, смешивается с топливом и в таком виде попадает в камеру сгорания. Смесь воспламеняется, а высокое давление обеспечивает большой выход энергии в виде продуктов горения. Современные модификации агрегатов могут работать не только на газе. В качестве горючего используется дизельное топливо, керосин, нефть. Эти установки отличает высокая производительность и надежность в работе. При поломке какого-либо элемента, ремонт легко производится на месте, что существенно снижает эксплуатационные расходы.

Газотурбинные установки малой мощности отличаются низким расходом смазочных материалов, им не требуется водяное охлаждение. При соблюдении рекомендация завода-изготовителя, они могут безопасно работать в течение длительного времени, без аварий и поломок.

Основные виды газотурбинных агрегатов

Газотурбинные электростанции нашли широкое применения в самых разных сферах. Они снабжают электроэнергией крупные объекты промышленного назначения, удаленные здания и сооружения. В случае необходимости, газотурбинная электростанция в состоянии обеспечить электричеством целые населенные пункты. Агрегаты малой мощности нередко используются в частном секторе и на сельскохозяйственных объектах.

Основным критерием классификации электростанций являются их размеры, в соответствии с которыми выбирается и место их использования:

  • Стационарные установки и сопутствующее оборудование. Монтируются на капитальных неподвижных фундаментах. На них устанавливаются самые мощные турбины и электрические генераторы.
  • Передвижные или мобильные установки. Также обладают высокой мощностью, но при этом могут перемещаться с места на место. Работают не только на газе, но и на жидком топливе.
  • Мини-установки или микротурбины. Вырабатывают электрическую и тепловую энергию, но при этом отличаются компактными размерами и низким уровнем шума во время работы. Последнее качество дает возможность размещать такие агрегаты в непосредственной близости от частных домов. Они могут работать в режиме когенерации, вырабатывая воду и пар для систем отопления, и в режиме тригенерации, преимущественно, в вентиляционных системах.

Преимущества и недостатки ГТЭС

К несомненным плюсам можно отнести следующие:

  • Максимально простое устройство. В отличие от паровой установки, котел не нужен. В связи с этим отсутствуют градирни, паропроводы и другие приспособления. Существенно снижена масса и материалоемкость таких установок.
  • Вода расходуется в минимальном количестве, охлаждая смазку в подшипниках.
  • Быстрый монтаж и ввод в эксплуатацию. Мощный турбогенератор запускается в работу в течение 15-20 минут, а паровая турбина – в течение нескольких часов.
  • Возможность дополнительно производить тепловую энергию, что способствует более быстрой окупаемости установки.
  • Токсичные выбросы отсутствуют, вибрация незначительная. Можно без ограничений использовать в населенных пунктах.
  • Доступное газовое топливо.
  • Использование в труднодоступных районах, где отсутствует центральное электроснабжение.

Тем не менее, нельзя сбрасывать со счетов и определенные минусы, характерные для данного типа установок:

  • Для достижения полезной мощности изначально требуется высокая температура газа – свыше 550 градусов. В связи с этим, для изготовления турбины используются жаростойкие материалы. Требуется система охлаждения мест, подверженных сильному нагреву.
  • Фактическая полезная мощность довольно низкая, поскольку ее значительная часть расходуется на привод компрессорной установки.
  • Твердым видам топлива необходима предварительная обработка.
  • Большие турбины отличаются высоким уровнем шума.

Возможно ли дома иметь собственную надежную, компактную систему генерации тепла и электричества? Компания MTT Micro Turbine Technology BV (Нидерланды) на этот вопрос ответила утвердительно, создав установку EnerTwin на основе микротурбины, одновременно генерирующей 3 кВт электричества и 15 кВт тепла. Микро-ТЭЦ EnerTwin разработана для замены отопительных котлов для малого бизнеса и домашних хозяйств. Основное внимание уделяется низкой себестоимости, надежности, снижению уровня шума и низким эксплуатационным расходам.

Выглядит МикроТЭЦ как обычный бытовой прибор

Микро-ТЭЦ одновременно генерирует (когенерирует) тепловую и электрическую энергию в местах, где они обе востребованы. Как правило, основным потребителем энергии микро-ТЭЦ является система отопления. Электричество, в этом случае, становится побочным продуктом, производимым по очень низкой себестоимости. Основное преимущество микро-ТЭЦ в том, что энергия топлива используется практически полностью. В этом состоит основное отличие от обычных электростанций, где значительное количество тепла теряется в атмосферу. Кроме того, микро-ТЭЦ экономит на передаче электроэнергии от электростанций до конечных пользователей, за счет уменьшения потерь. Любое превышение выработки электроэнергии от микро-ТЭЦ можно экспортировать в электрическую сеть (в Европе, США и др.). Существуют специальные программы стимулирования для поставщиков электроэнергии. Например в Германии, для тех кто поставляет излишки генерируемой электроэнергии в сеть, дополнительно предоставляются льготы. Это делает преимущества когенерации еще большими.

Читайте также:  Весы полярис показывают lo

Распределенная система генерации энергии на базе микро-ТЭЦ EnerTwin

Технология

EnerTwin система микро-ТЭЦ построена на основе микротурбины. Принцип работы заключается в следующем:

Основная схема рабочих узлов микро-ТЭЦ

  1. Окружающий воздух поступает и сжимается в компрессоре.
  2. Сжатый воздух предварительно нагревают в рекуператоре.
  3. В камере сгорания, добавляется тепло при сгорании топлива.
  4. Горячий сжатый газ расширяется в турбине, что обеспечивает механическую энергию для компрессора и генератора. «Инвертер» преобразует энергию, подаваемую генератором в напряжение и частоту электросети ( 230 ⁄50 Гц).
  5. Расширенный газ после турбины нагревает воздух, сжатый компрессором в рекуператоре (см.2).
  6. Остаточное тепло, оставшееся в выходном газе после рекуператора, поглощается в теплообменнике с водой.
  7. Горячая вода используется для центрального отопления и /или горячего водоснабжения.

Внутреннее устройство EnerTwin

Турбина

Газовые турбины известны своей высокой мощностью, низким весом и эксплуатационными расходами. Использование технологии турбонаддува, разработка которой финансировалась государством, приводит к низкой себестоимости производства. Газотурбинные компоненты оптимизировались для применения в турбогенераторе. Высокоскоростной турбогенератор при частоте вращения 240 тысяч оборотов в минуту имеет чистый электрический к.п.д. 15% (19% эффективность мощности на валу). Вместе с низкими затратами, это обеспечивает большой потенциал для экономически эффективных микро-ТЭЦ систем.

Новая концепция

При создании EverTwin компания применила нетрадиционный подход для разработки эффективного, очень малого газотурбинного двигателя. Этот проект основан на вращающейся камере сгорания в сочетании с эффективным компрессором.

Эффективность газовой турбины в значительной степени зависит от потерь из-за утечек потока, тепловых потерь и трения. Эти потери становятся еще существенней при попытках создать турбины микро-мощности, масштабируя обычные газовые турбины. При уменьшении турбины соотношение зазоров и размеров лопастей турбины уменьшается. Кроме того, при уменьшении размера (снижается число Рейнольдса) вязкие потери на трение становятся больше, чем в обычных турбогенераторах. В результате , существует фундаментальное ограничение на эффективность микротурбин с обычной конфигурацией.

В концепции вращающейся камеры сгорания вышеуказанные масштабные эффекты не так заметны. Ключевой особенностью является монолитный ротор.

Монолитный ротор микротурбины

Монолитный ротор в разрезе

В основном , турбина состоит из одного ротора, в котором расположены центробежный компрессор, вращающаяся камера сгорания и реакционная турбина. У вращающейся камеры сгорания, компрессор не имеет диффузора и турбина не имеет лопаток.

Электрогенератор

Эффективный высокочастотный генератор на постоянных магнитах преобразует механическую энергию микротурбины в электроэнергию.
Генератор полностью интегрирован в ротор турбины, избегая затрат и потерь от дополнительных подшипников и муфт.

Уровень шума

Микротурбины излучают только высокочастотный шум, который может быть эффективно заглушен. По сравнению с обычными генераторами и турбинами, EnerTwin имеет очень низкий уровень шума.

Спецификация EnerTwin

  • Электрическая мощность (макс/мин) — 3,0 /1,0 кВт
  • Тепловая мощность (макс/мин) — 14,4 /5,0 кВт
  • Электрический КПД (макс/мин) — 15 /10 %
  • Максимальный суммарный КПД — 87% (зависит от параметров системы отопления, например температуры обратного трубопровода)
  • Скорость вращения ротора (макс/ мин) — 240 / 180 тысяч об/мин
  • Потребление газа (38.5 MJ/nm3, макс/мин) — 1,87 /0,84 nm3/h
  • Топливо — природный газ
  • Параметры системы отопления (подающая/обратная труба) — 80 ⁄60 °С
  • Шум — 55 dB(A) 1m
  • Размеры — 970 x 610 x 1120мм
  • Вес — 225 кг
  • Диаметр дымохода — 100мм
  • Электросеть — 230 В/50 Гц

Основное применение

По мнению разработчика основное применение микро-ТЭЦ:

  • Малые и средние предприятия;
  • Отрасли с относительно небольшим устойчивым требования тепла;
  • Конференц-залы;
  • Большие жилые дома;
  • Дома с бассейном и /или сауной;
  • Коттеджи;
  • Школы, спортивные школы, спортивные залы, студии и кружки;
  • Коммунальные здания;
  • Автозаправочные станции;
  • Гостиницы и рестораны;
  • Магазины;
  • Оздоровительные центры;
  • Дома престарелых;
  • Правительственные здания, такие как залы, полицейские станции, библиотеки.

Сертификация

В феврале 2013 года EnerTwin получили сертификат CE для полевых испытаний. Получение этого сертификата представляет собой важную веху в развитии EnerTwin. Сертификат был выдан по KIWA после всесторонних испытаний работы турбин на газообразном топливе и вопросам безопасности труда. Свидетельство KIWA действительно для всех стран Европейского Союза, а также в Норвегии, Хорватии, Турции и Швейцарии.

Европейский сертификат безопасности KIWA

Где посмотреть?

МТТ скоро будет участвовать на выставках:

  • Hannover Messe в Германии с 7 по 11 апреля 2014 года, павильон Holland Energy House, холл 27 G24
  • MCE в Милане с 18 по 21 марта 2014 г. в павильоне 5, стенд №. E02 10.
Комментировать
113 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector