No Image

Где применяются электрические двигатели

СОДЕРЖАНИЕ
506 просмотров
12 декабря 2019

Где применяются электрические двигатели

Автор ЁочныйФрукт задал вопрос в разделе Естественные науки

Где применяются электрические двигатели?Каковы их преимущества по сравнению с тепловыми? и получил лучший ответ

Ответ от Малыш[гуру]
Электрические двигатели переменного тока применяют для привода рабочих машин различного назначения (насосы, деревообрабатывающие станки, дробилки и т. д.), не требующих регулирования частоты вращения. Выпускаются на мощности от 0, 2 до 200 и более киловатт.
Электродвигатели постоянного тока состоят из подвижной части (якоря) и неподвижной части (статора). Они выпускаются с параллельным, последовательным и смешанным соединением обмоток якоря и статора. Основное достоинство двигателей постоянного тока — это возможность плавной регулировки скорости в широких пределах, но конструкция их сложна и они требуют постоянного наблюдения за работой щеток и коллектора. Кроме того, двигатели постоянного тока требуют специальных источников питания, так как все электрические станции вырабатывают только переменный ток.
Если коротко, то электродвигатель — экологически чистый вид двигателя приводящий машину в движение, нежели тепловой двигатель, который создает выхлопные газы, загрязняющие окружающую среду.

Подписка на рассылку

Электродвигатель является специальной машиной, которая электрическую энергию преобразует в механическую. Учитывая род тока электроустановки, в которой работает электрическая машина, используются основные типы электродвигателей — постоянного и переменного тока.

Электромоторы переменного тока подразделяются на синхронные и асинхронные. Асинхронные, в свою очередь, делятся на общепромышленные, взрывозащищенные и крановые.

Электромашины переменного тока бывают однофазными и трехфазными. На современном этапе довольно широкое применение находят трехфазные синхронные и асинхронные электромоторы.

Сегодня асинхронные электромоторы являются наиболее востребованными электрическими двигателями. Такую широкую популярность асинхронные устройства получили из-за своей простоты конструкции и довольно высокой эксплуатационной надежности. Асинхронный электродвигатель довольно часто применяют в бытовой технике и на промышленных предприятиях.

В тех случаях, когда в приводах не нужны большие пусковые моменты, применяют электродвигатель с короткозамкнутым ротором. А когда не требуется плавной регулировки скорости и мощность электродвигателя большая, используется асинхронный электродвигатель с фазным ротором. Электромоторы асинхронные с фазным ротором используются в тех случаях, когда нужно снизить пусковой ток и увеличить пусковой момент.

Асинхронные однофазные агрегаты применяются в сети переменного тока 220 вольт. Такие электромоторы нашли широкое применение в бытовых стиральных машинах, бетономешалках, строительном электроинструменте, кухонных многофункциональных комбайнах, в деревообрабатывающих и сверлильных станках и другом бытовом оборудовании.

Асинхронные электрические двигатели также применяются для приводов различных крановых установок промышленного назначения, всевозможных грузовых лебедок и прочих устройств, которые применяются в производстве. Электромоторы переменного тока имеют огромное значение для многих отраслей промышленности. Асинхронные агрегаты могут быть с преобразовательным устройством в виде коллектора (коллекторные электродвигатели) или не иметь его (бесколлекторные электромоторы).

Коллекторные и бесколлекторные электродвигатели переменного тока применяются в различных промышленных и бытовых электроустройствах (холодильниках, пылесосах, мясорубках, электрическом инструменте, вентиляторах, соковыжималках) и в медицинской технике. Они рассчитаны на работу как от сети постоянного тока, так и от сети переменного тока. Для коллекторных электродвигателей характерен большой пусковой момент и относительно малые размеры.

Бесколлекторные электромоторы имеют малый уровень электромагнитных излучений и низкий уровень шума. Для них характерен высокий ресурс эксплуатации. В большинстве случаев бесколлекторные электродвигатели эксплуатируются в местах со взрывоопасной средой, например в нефтегазовой промышленности.

Читайте также:  Акустика с цифровым входом

Довольно широкое распространение среди электромоторов переменного тока получили асинхронные электромоторы с трехфазной симметричной обмоткой на сердечнике статора, которые запитываются от сети переменного тока

Примечательно, что асинхронные электродвигатели, как правило, используются как двигатели, а синхронные электромоторы чаще всего используются как генераторы.

Синхронные электродвигатели являются двухобмоточными электрическими машинами, в которых одна из обмоток подсоединена к электрической сети с определенной постоянной частотой вращения, при этом вторая регулярно возбуждается постоянным током с частотой вращения ротора, которая не зависит от нагрузки. Такие машины применяются в качестве электродвигателей в крупных установках, таких как приводы поршневых компрессоров и воздухопроводов и, как правило, используются в качестве генераторов.

Скорость вращения синхронных моторов находится в постоянном соотношении к определенной частоте электрической сети.

Рольганговые электромоторы применяются для приводов, которые эксплуатируются в условиях высоких температур различного металлургического производства. Взрывозащищенные электромоторы предназначены для привода разных механизмов в газовой, химической, нефтеперерабатывающей промышленности, где могут появляться различные взрывоопасные соединения газов и паров с воздухом. Различные крановые электромоторы в основном предназначены для всевозможных крановых механизмов всех типов. Они могут быть применены для привода других механизмов, которые работают в кратковременных режимах эксплуатации.

Общепромышленные электромоторы широко используются в деревообрабатывающей промышленности, станкостроении, всевозможных системах промышленной вентиляции, различных транспортерах, подъемниках, всевозможном насосном оборудовании.

В некоторых режимах работы электропривода электродвигатель осуществляет обратное преобразование энергии, то есть работает в режиме электрического генератора.

По виду создаваемого механического движения электродвигатели бывают вращающиеся, линейные и др. Под электродвигателем чаще всего подразумевается вращающий электродвигатель, так как он получил наибольшее применение.

Областью науки и техники изучающей электрические машины является — электромеханика. Принято считать, что ее история начинается с 1821 года, когда был создан первый электродвигатель М.Фарадея.

Конструкция электродвигателя

Основными компонентами вращающегося электродвигателя являются статор и ротор. Статор — неподвижная часть, ротор — вращающаяся часть.

У большей части электродвигателей ротор располагается внутри статора. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Принцип работы электродвигателя

    Подробное описание принципа работы электродвигателей разных типов:

  • Принцип работы однофазного асинхронного электродвигателя
  • Принцип работы трехфазного асинхронного электродвигателя
  • Принцип работы синхронного электродвигателя

Классификация электродвигателей

Вращающийся электродвигатель
Само коммутируемый Внешне коммутируемый
С механической коммутацией (коллекторный) С электронной коммутацией 1 (вентильный 2, 3 ) Асинхронный электродвигатель Синхронный электродвигатель
Переменного тока Постоянного тока Переменного тока 4 Переменного тока
  • Универсальный
  • Репульсионный
  • КДПТ с обмоткой возбуждения
    Включение обмотки

  • Независимое
  • Последовательное возбуждения
  • Параллельное
  • Комбинированное
  • КДПТ с постоянными магнитами
    • БДПТ
      (Бесколлекторный двигатель + ЭП |+ ДПР)
    • ВРД
      (Реактивный двигатель с ротором с явновыраженными полюсами и сосредоточенной обмоткой статора + ЭП |+ ДПР)
    • Трехфазный
      (многофазный)
    • АДКР
    • АДФР
  • Двухфазный
    (конденсаторный)
  • Однофазный
    • с пусковой обмоткой
    • с экранированными полюсами
    • с асимметричным магнитопроводом
      • СДОВ
        (с контактными кольцами и щетками) —>
      • СДПМ 5 —>
      • СДПМВ
      • СДПМП
      • Гибридный
    • СРД
    • Гистерезисный
    • Индукторный
    • Гибридный СРД-ПМ
    • Реактивно-гистерезисный
    • Шаговый 5
    • Простая электроника Выпрямители,
      транзисторы
      Более сложная
      электроника
      Сложная электроника (ЧП)
      1. Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
      2. Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря [5].
      3. Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля [1].
      4. Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
      5. Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.
      • КДПТ — коллекторный двигатель постоянного тока
      • БДПТ — бесколлекторный двигатель постоянного тока
      • ЭП — электрический преобразователь
      • ДПР — датчик положения ротора
      • ВРД — вентильный реактивный двигатель
      • АДКР — асинхронный двигатель с короткозамкнутым ротором
      • АДФР — асинхронный двигатель с фазным ротором
      • СДОВ — синхронный двигатель с обмоткой возбуждения
      Читайте также:  День советского военно морского флота

      Типы электродвигателей

      Коллекторные электродвигатели

      Коллекторная машина — вращающаяся электрическая машина, у которой хотя бы одна из обмоток, участвующих в основном процессе преобразования энергии, соединена с коллектором [1]. В коллекторном двигателе щеточно-коллекторный узел выполняет функцию датчика положения ротора и переключателя тока в обмотках.

      Универсальный электродвигатель

      Коллекторный электродвигатель постоянного тока

      Бесколлекторные электродвигатели

      У бесколлекторных электродвигателей могут быть контактные кольца с щетками, таким образом не надо путать бесколлекторные и бесщеточные электродвигатели.

      Бесщеточная машина — вращающаяся электрическая машина, в которой все электрические связи обмоток, участвующих в основном процессе преобразования энергии, осуществляются без скользящих электрических контактов [1].

      Асинхронный электродвигатель

      Cинхронный электродвигатель

      Специальные электродвигатели

      Серводвигатель

      Основные параметры электродвигателя

      Момент электродвигателя

      Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

      ,

      • где M – вращающий момент, Нм,
      • F – сила, Н,
      • r – радиус-вектор, м

      ,

      • где Pном – номинальная мощность двигателя, Вт,
      • nном — номинальная частота вращения, мин -1 [4]

      Начальный пусковой момент — момент электродвигателя при пуске.

      1 oz = 1/16 lb = 0,2780139 N (Н)
      1 lb = 4,448222 N (Н)

      момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

      1 oz∙in = 0,007062 Nm (Нм)
      1 lb∙in = 0,112985 Nm (Нм)

      Мощность электродвигателя

      Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

      Механическая мощность

      Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

      ,

      • где P – мощность, Вт,
      • A – работа, Дж,
      • t — время, с

      Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы [2].

      ,

      Для вращательного движения

      ,

      • где – угол, рад,

      ,

      • где – углавая скорость, рад/с,

      Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

      Коэффициент полезного действия электродвигателя

      Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

      Читайте также:  1 Тонна это сколько кубических метров

      ,

      • где – коэффициент полезного действия электродвигателя,
      • P1 — подведенная мощность (электрическая), Вт,
      • P2 — полезная мощность (механическая), Вт
        При этом потери в электродвигатели обусловлены:

      • электрическими потерями — в виде тепла в результате нагрева проводников с током;
      • магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
      • механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
      • дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

      КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

      Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

      Частота вращения

      • где n — частота вращения электродвигателя, об/мин

      Момент инерции ротора

      Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

      ,

      • где J – момент инерции, кг∙м 2 ,
      • m — масса, кг

      1 oz∙in∙s 2 = 0,007062 kg∙m 2 (кг∙м 2 )

      Момент инерции связан с моментом силы следующим соотношением

      ,

      • где – угловое ускорение, с -2 [2]

      ,

      Номинальное напряжение

      Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики [3].

      Электрическая постоянная времени

      Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

      ,

      • где – постоянная времени, с

      Механическая характеристика

      Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

      Сравнение характеристик внешне коммутируемых электрических двигателей

      Ниже представлены сравнительные характеристики внешне коммутируемых электродвигателей, в ракурсе применения в качестве тяговых электродвигателей в транспортных средствах.

      Параметр
      АДКР

      СДПМП

      СДПМВ

      СРД-ПМ

      СДОВ
      Постоянство мощности во всем диапазоне скоростей
      Момент к току статора
      Эффективность (КПД) во всем рабочем диапазоне
      • АДКР — асинхронный двигатель с короткозамкнутым ротором
      • СДПМП — синхронный двигатель c поверхностной установкой постоянных магнитов
      • СДПМВ — синхронный двигатель со встроенными постоянными магнитами
      • СРД-ПМ — синхронный реактивный двигатель с постоянными магнитами (синхронный гибридный двигатель)
      • СДОВ — синхронный двигатель с обмоткой возбуждения

      В соответствии с выше приведенными показателями гибридный синхронный электродвигатель, а именно синхронный реактивный электродвигатель со встроенными постоянными магнитами, является наиболее подходящим для применения в качестве тягового электродвигателя в автомобилестроении (выбор проводился для концепта автомобилей BMW i3 & BMW i8). Использование реактивного момента обеспечивает высокую мощность в верхнем диапазоне скоростей. Более того такой двигатель обеспечивает очень высокую эффективность (КПД) в широком рабочем диапазоне [7].

      Области применения электродвигателей

      Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии [6].

      Комментировать
      506 просмотров
      Комментариев нет, будьте первым кто его оставит

      Это интересно
      Adblock detector