No Image

Генератор импульсов с регулируемой частотой и скважностью

1 687 просмотров
12 декабря 2019

Принципиальная электрическая схема генератора прямоугольных импульсов показана на рисунке. Используя ШИМ-регулятор KA7500В (TL494 немного хуже, так как нет 100% регулировки ШИМ), можно изготовить неплохой генератор прямоугольных импульсов (20 Гц. 200 кГц) с регулировкой скважности 0. 100%. При этом можно использовать две независимых схемы коммутации с применением схемы с общим эмиттером или общим коллектором (до 250 мА и 32 В), или параллельное включение (до 500 мА). Если вывод 13 переключить с "земляного" на 14-й (стабилизированное 5 В), то выходы будут включаться попеременно.

Согласно документации, КА7500В должна работать при напряжении от 7 до 42 В и токе на каждом выходе до 250 мА. Однако у автора при напряжении выше 35 В микросхемы "стреляли". По току микросхемы на верхних пределах не проверялись из-за боязни сжечь их. Имевшиеся экземпляры микросхем работали и в диапазоне частот от долей герц до 500. 1000 кГц (в верхнем диапазоне ШИМ, естественно, хуже из-за увеличения общей доли времени на переключение компараторов и выходных ключей).

Сопротивление резистора на входе генератора должно быть в пределах от 1 кОм до 100 МОм, но изменение частоты нелинейное. А вот изменение частоты от емкости на входе линейное, по крайней мере, до 10 мкФ большие значения автор не пробовал). Точность установки или больший диапазон (от долей герц до 500. 1000 кГц) можно расширить, применив большее количество диапазонов.

Так, товарищи! Заканчиваем банкет, убираем рыбные закуски.
Не забываем, что на сегодняшнем мероприятии, посвящённом Дню пивовара России, мы обсуждаем наболевшее: "Исследование разнообразных схемотехнических построений и характеристик генераторов на ИМС структуры КМОП".

Развиваем сюжетную линию, плавно переходим к генераторам прямоугольных импульсов с несимметричной формой сигнала, а также генераторам с изменяемой скважностью выходных импульсов.

Для начала определимся — для чего, собственно, когда и с чем потреблять само понятие "скважность импульсного сигнала"?

Читайте также:  Антуриум из семян из китая

Тут как нельзя всё просто: Скважность = Т/tи, где
Т-полный период колебаний,
tи — длительность импульса,
tп — длительность паузы.

При величине скважности, равной 2, импульсный сигнал имеет симметричную форму (меандр), во всех остальных случаях — несимметричную (не меандр).
Рис.1

Теперь также плавно, без рывков и резких падений, переходим с схемотехническим изыскам.

Отличие несимметричных генераторов от устройств, описанных на предыдущей странице, как правило, сводится к утяжелению схемы дополнительным резистором и парой диодов для разделения цепей заряда конденсатора разнополярными токами.


Рис.2

На Рис.2 приведена схема генератора импульсов с раздельной установкой длительности импульса и паузы между ними.
Параметры выходных импульсов генератора описываются следующими приблизительными формулами:

F = 0,77/((R1+R2)×C1))
Скважность импульсов = (R1+R2)/R1

Схема обладает весомым параметром потребления тока.
Значения этого параметра находятся в диапазоне от единиц до десятков мА, в зависимости от величин напряжения питания и частоты генерации.


Рис.3

Именно из-за этих соображений, рекомендуется собирать подобные схемы генераторов на цифровых микросхемах, представляющих собой триггер Шмитта (Рис.3).
Мало того, что они просты в реализации, так ещё и исключительно экономичны — при напряжении питания менее 6 В ток потребления составляет всего несколько десятков микроампер.
Частота генерации и скважность для приведённой схемы:

F = 0,86/((R1+R2)×C1))
Скважность импульсов = (R1+R2)/R1


Рис.4

В случае необходимости получить плавную регулировку скважности при неизменной частоте имеет смысл обратить внимание на схему, приведённую на Рис.4.
F = 0,77/((2*R1+R2)×C1))
Макс. скважность импульсов = R2/R1+2
Мин. скважность импульсов = 1+R1/(R1+R2)


Рис.5

Точно таким же образом реализуется плавная регулировка скважности для схем, построенных на триггере Шмитта (Рис.5).

F = 0,86/((2*R1+R2)×C1))
Макс. скважность импульсов = R2/R1+2
Мин. скважность импульсов = 1+R1/(R1+R2)

Формулы для расчёта частоты рассматриваемых генераторов соответствуют напряжению питания 5В и температуре окружающей среды 25°С.

Все представленные схемы могут быть реализованы на элементах И—НЕ, ИЛИ—НЕ, триггерах Шмитта, или инверторах.

Читайте также:  Двери из древесно полимерного композита

Идём дальше к таблице для расчёта номиналов элементов генераторов, исходя из заданной частоты генерации и скважности выходных импульсов.

ТАБЛИЦА РАСЧЁТА НОМИНАЛОВ ЭЛЕМЕНТОВ ГЕНЕРАТОРОВ НА КМОП МИКРОСХЕМАХ БЕЗ ПЛАВНОЙ РЕГУЛИРОВКИ СКВАЖНОСТИ.

Бросив беглый взгляд на Рис.1, легко заметить, что значение скважности импульсов должно быть больше 1.
Теоретически величины сопротивлений резисторов R1 и R2 должны быть не менее 1кОм, однако на практике, для минимизации влияния выходного сопротивления микросхемы на частоту сигнала, рекомендуется выбирать значения сопротивления этих резисторов — не менее 10кОм. Поэтому послеживайте за рассчитанным значением R2, если оно не вписывается в нужный диапазон — повышайте номинал R1.

ТАБЛИЦА РАСЧЁТА НОМИНАЛОВ ЭЛЕМЕНТОВ ГЕНЕРАТОРОВ НА КМОП МИКРОСХЕМАХ C ПЛАВНОЙ РЕГУЛИРОВКОЙ СКВАЖНОСТИ.

R1 — не менее 1кОм, желательно — не менее 10кОм.
Пределы изменения длительности импульса — больше 1.

•D1,2,3 – диоды 1N4007. Как достаточно распространенные.
•C1,3,4 – конденсаторы керамические 50В. С4 можно поставить электролитический 2,2мкФх25В. Необходимо соблюсти полярность. Конденсаторы можно ставить и с бОльшим напряжением.
•С2 — конденсатор электролитический. При маленькой его емкости питание микросхемы может быть нестабильным, а отсюда и сбои в работе.
•Постоянные резисторы все 0,25 Вт. R1 не менее 1k. Для остальных можно взять и ближайшее значение. R5 просто 20 Ом, а не кОм.
•R3,4 — переменные резисторы. Желательно с линейной характеристикой. На схеме показаны 16К1-В10К и 16К1-В500К.
С платы резисторы вынес специально, потому что это дает возможность подобрать их в других корпусах, да и расположить в какой-нибудь коробке будет проще.
Если не оказалось с номиналом 10к, то можно ставить 5к или 20к. В первом случае время открытого состояния форсунки уменьшится примерно в два раза и, если его окажется мало для полного открытия форсунки, то надо будет увеличить номинал резистора R1. Во втором случае время открытого состояния форсунки увеличится примерно в два раза, и здесь мы выходим из рабочего диапазона форсунки. Это надо будет помнить и не выводить R3 больше чем наполовину.
Если не оказалось с номиналом 500к, то можно ставить 200к или 1М. В первом случае минимальная частота будет примерно 3 Гц и будет зря повышенный расход промывающей жидкости. Во втором случае на минимальной частоте схема может работать неустойчиво, но это не страшно, потому что достаточно R4 не выводить больше чем наполовину.
•Транзистор IRF3710 или IRF3710Z в корпусе ТО220. N-канал, Uси 100В, Iси max 57A. Можно попробовать и с другим Iси. При сильном нагреве установить радиатор. У транзисторов других производителей назначения выводов могут не совпадать.
•NE555 – микросхема-таймер в корпусе DIP-8. Можно попробовать отечественную КР1006ВИ1.
•Панелька SCS-8 под микросхему.

Читайте также:  Asus zenfone max plus m1 характеристики

Для режима "Кавитация" необходимо частоту увеличить до 400Гц. Для этого С4 ставим 0,22 мкФ, а R4 скручиваем по часовой в крайнее положение.

Регулировка скважности – регулировка времени открытого состояния форсунок. При данных значениях R1,R3 и С4 время будет лежать в рабочем диапазоне форсунок и будет примерно 1,5-20 млСек. При изменении скважности частота будет оставаться неизменной.

Регулировка частоты при данных значениях С4,R4,R2,R3 будет примерно 1-50Гц, что соответствует 120-6000 об/мин двигателя. Форсунка срабатывает 1 раз/сек (1Гц), если коленвал вращается со скоростью 2об/сек, что соответствует 120об/мин. При изменении частоты время открытого состояния форсунок будет оставаться неизменным.

Можно сделать и без регулировок, но тогда автолюбитель лишится возможности что-нибудь покрутить и будет ему постоянно казаться, что быстро или медленно. Интересно было наблюдать, как взрослый дядька 1м 90 ростом, сидя на корточках, в одной руке держал переноску и подсвечивал с обратной стороны колбы, а другой постоянно менял регулировки. И так полчаса.

Комментировать
1 687 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector