No Image

Генератор низких частот своими руками

551 просмотров
12 декабря 2019

Генераторы низкой частоты (ГНЧ) используют для получения незатухающих периодических колебаний электрического тока в диапазоне частот от долей Гц до десятков кГц. Такие генераторы, как правило, представляют собой усилители, охваченные положительной обратной связью (рис. 11.7,11.8) через фазосдви-гающие цепочки. Для осуществления этой связи и для возбуждения генератора необходимы следующие условия: сигнал с выхода усилителя должен поступать на вход со сдвигом по фазе 360 градусов (или кратном ему, т.е. О, 720, 1080 и т.д. градусов), а сам усилитель должен иметь некоторый запас коэффициента усиления, KycMIN. Поскольку условие оптимального сдвига фаз для возникновения генерации может выполняться только на одной частоте, именно на этой частоте и возбуждается усилитель с положительной обратной связью.

Для сдвига сигнала по фазе используют RC- и LC-цепи, кроме того, сам усилитель вносит в сигнал фазовый сдвиг. Для получения положительной обратной связи в генераторах (рис. 11.1, 11.7, 11.9) использован двойной Т-образный RC-мост; в генераторах (рис. 11.2, 11.8, 11.10) — мост Вина; в генераторах (рис. 11.3 — 11.6, 11.11 — 11.15) — фазосдвигающие RC-це-почки. В генераторах с RC-цепочками число звеньев может быть достаточно большим. На практике же для упрощения схемы число не превышает двух, трех.

Расчетные формулы и соотношения для определения основных характеристик RC-генераторов сигналов синусоидальной формы приведены в таблице 11.1. Для простоты расчета и упрощения подбора деталей использованы элементы с одинаковыми номиналами. Для вычисления частоты генерации (в Гц) в формулы подставляют значения сопротивлений, выраженные в Омах, емкостей — в Фарадах. Для примера, определим частоту генерации RC-генератора с использованием трехзвенной RC-це-пи положительной обратной связи (рис. 11.5). При R=8,2 кОм; С=5100 пФ (5,1х1СГ9 Ф) рабочая частота генератора будет равна 9326 Гц.

Для того чтобы соотношение резистивно-емкостных элементов генераторов соответствовало расчетным значениям, крайне желательно, чтобы входные и выходные цепи усилителя, охваченного петлей положительной обратной связи, не шунтировали эти элементы, не влияли на их величину. В этой связи для построения генераторных схем целесообразно использовать каскады усиления, имеющие высокое входное и низкое выходное сопротивления.

На рис. 11.7, 11.9 приведены «теоретическая» и несложная практическая схемы генераторов с использованием двойного Т-моста в цепи положительной обратной связи.

Генераторы с мостом Вина показаны на рис. 11.8, 11.10 [Р 1/88-34]. В качестве УНЧ использован двухкаскадный усилитель. Амплитуду выходного сигнала можно регулировать потенциометром R6. Если требуется создать генератор с мостом Вина, перестраиваемый по частоте, последовательно с резисторами R1, R2 (рис. 11.2, 11.8) включают сдвоенный потенциометр. Частотой такого генератора можно также управлять, заменив конденсаторы С1 и С2 (рис. 11.2, 11.8) на сдвоенный конденсатор переменной емкости. Поскольку максимальная емкость такого конденсатора редко превышает 500 пФ, удается перестраивать частоту генерации только в области достаточно высоких частот (десятки, сотни кГц). Стабильность частоты генерации в этом диапазоне невысока.

На практике для изменения частоты генерации подобных устройств часто используют переключаемые наборы конденсаторов или резисторов, а во входных цепях применяют полевые транзисторы. Во всех приводимых схемах отсутствуют элементы стабилизации выходного напряжения (для упрощения), хотя для генераторов, работающих на одной частоте или в узком диапазоне ее перестройки, их использование не обязательно.

Схемы генераторов синусоидальных сигналов с использованием трехзвенных фазосдвигающих RC-цепочек (рис. 11.3)

показаны на рис. 11.11, 11.12. Генератор (рис. 11.11) работает на частоте 400 Гц [Р 4/80-43]. Каждый из элементов трехзвен-ной фазосдвигающей RC-цепочки вносит фазовый сдвиг на 60 градусов, при четырехзвенной — 45 градусов. Однокаскадный усилитель (рис. 11.12), выполненный по схеме с общим эмиттером, вносит необходимый для возникновения генерации фазовый сдвиг на 180 градусов. Заметим, что генератор по схеме на рис. 11.12 работоспособен при использовании транзистора с высоким коэффициентом передачи по току (обычно свыше 45. 60). При значительном снижении напряжения питания и неоптимальном выборе элементов для задания режима транзистора по постоянному току генерация сорвется.

Звуковые генераторы (рис. 11.13 — 11.15) близки по построению к генераторам с фазосдвигающими RC-цепочками [Рл 10/96-27]. Однако за счет использования индуктивности (телефонный капсюль ТК-67 или ТМ-2В) вместо одного из ре-зистивных элементов фазосдвигающей цепочки, они работают с меньшим числом элементов и в большем диапазоне изменения напряжения питания.

Так, звуковой генератор (рис. 11.13) работоспособен при изменении напряжения питания в пределах 1. 15 В (потребляемый ток 2. 60 мА). При этом частота генерации изменяется от 1 кГц (ипит=1,5 В) до 1,3 кГц при 15 В.

Звуковой индикатор с внешним управлением (рис. 11.14) также работает при 1)пит=1. 15 В; включение/выключение генератора производится подачей на его вход логических уровней единицы/нуля, которые также должны быть в пределах 1. 15 В.

Читайте также:  Газовый настенный котел neva lux 8224

Звуковой генератор может быть выполнен и по другой схеме (рис. 11.15). Частота его генерации меняется от 740 Гц (ток потребления 1,2 мА, напряжение питания 1,5 В) до 3,3 кГц (6,2 мА и 15 В). Более стабильна частота генерации при изменении напряжения питания в пределах 3. 11 В — она составляет 1,7 кГц± 1%. Фактически этот генератор выполнен уже не на RC-, а на LC-эле-ментах, причем, в качестве индуктивности используется обмотка телефонного капсюля.

Низкочастотный генератор синусоидальных колебаний (рис. 11.16) собран по характерной для LC-генераторов схеме «емкостной трехточки». Отличие заключается в том, что в качестве индуктивности использована катушка телефонного капсюля, а резонансная частота находится в диапазоне звуковых колебаний за счет подбора емкостных элементов схемы.

Другой низкочастотный LC-генератор, выполненный по каскодной схеме, показан на рис. 11.17 [Р 1/88-51]. В качестве индуктивности можно воспользоваться универсальной или стирающей головками от магнитофонов, обмотками дросселей или трансформаторов.

RC-генератор (рис. 11.18) реализован на полевых транзисторах [Рл 10/96-27]. Подобная схема используется обычно при построении высокостабильных LC-генераторов. Генерация возникает уже при напряжении питания, превышающем 1 В. При изменении напряжения с 2 до 10 6 частота генерации понижается с 1,1 кГц до 660 Гц, а потребляемый ток увеличивается, соответственно, с 4 до 11 мА. Импульсы частотой от единиц Гц до 70 кГц и выше могут быть получены изменением емкости конденсатора С1 (от 150 пФ до 10 мкФ) и сопротивления резистора R2.

Представленные выше звуковые генераторы могут быть использованы в качестве экономичных индикаторов состояния (включено/выключено) узлов и блоков радиоэлектронной аппаратуры, в частности, светоизлучающих диодов, для замены или дублирования световой индикации, для аварийной и тревожной индикации и т.д.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Генераторы низких частот предназначены для получения на выходе устройства периодических низкочастотных электрических сигналов с заданными параметрами (форма, амплитуда, частота сигнала).

Микросхема КР1446УД1 (рис. 35.1) представляет собой сдвоенный гай- to-rail ОУ общего назначения. На основе этой микросхемы могут быть созданы устройства разнообразного назначения, в частности, генераторы электрических колебаний, схемы которых приведены на рис. 35.2—35.4 [35.1]. Генератор (рис. 35.2):

♦ одновременно и синхронно вырабатывает импульсы напряжения прямоугольной и пилообразной формы;

♦ имеет единую для обоих ОУ искусственную среднюю точку, образованную делителем напряжения R1 и R2 [35.1].

На первом из ОУ построен интегратор, на втором — триггер Шмитта с широкой петлей гистерезиса (UraCT=UnHT;R3/R5), точными и стабильными порогами переключения. Частота генерации определяется по формуле:

f =———– и составляет для указанных на схеме номиналах 265 Ги. С

Рис. 35.7. Цоколевка и состав микросхемы КР 7446УД7

Рис. 35.2. Схема генератора прямоугольных- треугольных импульсов на микросхеме КР1446УД 7

изменением напряжения питания от 2,5 до 7 В эта частота изменяется не более чем на 1 %.

Усовершенствованный генератор (рис. 35.3) вырабатывает импульсы прямоугольной формы, причем их частота зависит от величины управляющего

Рис. 35.3. Схема управляемого генератора прямоугольных импульсов

входного напряжения по закону

При изменении

входного напряжения от 0,1 до 3 В частота генерации линейно возрастает от 0,2 до 6 кГц [35.1].

Частота генерации генератора прямоугольных импульсов на микросхеме КР1446УД5 (рис. 35.4) линейно зависит от величины приложенного управляющего напряжения и при R6=R7 определяется как:

5 В частота генерации линейно возрастает от 0 до 3700 Гц [35.1].

Рис. 35.4. Схема генератора, управляемого напряжением

-. Так, при изменении входного напряжения от 0,1 до

На основе микросхем TDA7233D, используя в качестве единой основы базовый элемент, рис. 35.5, а, можно собрать достаточно мощные генераторы импульсов (звуковые генераторы), а также преобразователи напряжения, рис. 35.5 [35.2].

Схема генератора (рис. 35.5, 6, верхняя) работает на частоте 1 кГц, которая определяется подбором элементов Rl, R2, Cl, С2. Емкость переходного конденсатора С задает тембр и громкость сигнала.

Схема генератора (рис. 35.5, б, нижняя), вырабатывает двухтональный сигал при условии индивидуального подбора емкости конденсатора С1 в каждом из использованных базовых элементов, например, 1000 и 1500 пФ.

Преобразователи напряжения (рис. 35.5, в) работают на частоте около 13 кГц (емкость конденсатора С1 снижена до 100 пФ):

♦ верхний — вырабатывает отрищ гельное относительно общей шины напряжение;

♦ средний — вырабатывает удвоенное относительно напряжения питания положительное;

♦ нижний — вырабатывает в зависимости от коэффициента трансформации разнополярное равновеликое напряжение с гальванической (при необходимости) развязкой от источника питания.

Рис. 35.5. Схемы нештатного применения микросхем TDA7233D: а – базовый элемент; б — в качестве генераторов импульсов; в — в качестве преобразователей напряжения

Читайте также:  Голова в банке как сделать

При сборке преобразователей следует учитывать, что на диодах выпрямителей теряется заметная часть выходного напряжения. В этой связи в качестве VD1, VD2 рекомендуется использовать диоды Шоттки. Ток нагрузки бестрансформаторных преобразователей может достигать 100—150 мА.

Генератор прямоугольных импульсов (рис. 35.6) работает в диапазонах частот 60—600 Гц 0,06—6 кГц; 0,6—60 кГц [35.3]. Для коррекции формы генерируемых сигналов может быть использована цепочка (нижняя часть рис. 35.6), подключаемая к точкам А и В устройства.

Охватив ОУ положительной обратной связью, нетрудно перевести устройство в режим генерации прямоугольных импульсов (рис. 35.7).

Генератор импульсов с плавной перестройкой частоты (рис. 35.8) может быть выполнен на основе микросхемы DA1 [35.4]. При использовании в качестве DA1 1/4 микросхемы LM339 регулировкой потенциометра R3 рабочая частота перестраивается в пределах 740— 2700 Гц (номинал емкости С1 в первоисточнике не указан). Исходная частота генерации определяется произведением C1R6.

Рис. 35.8. Схема широкодиапазонного перестраиваемого генератора на основе компаратора

. Рис. 35.7. Схема генератора прямоугольных импульсов на частоту 200 Гц

Рис. 35.6. Схема НЧ-генератора прямоугольных импульсов

На основе компараторов типа LM139, LM193 и им подобных могут быть собраны:

♦ генератор прямоугольных импульсов с кварцевой стабилизацией (рис. 35.9);

Генератор стабильных по частоте колебаний или так называемый «часовой» генератор прямоугольных импульсов может быть выполнен на компараторе DAI LTC1441 (или ему подобном) по типовой схеме, представленной на рис. 35.10. Частота генерации задается кварцевым резонатором Ζ1 и составляет 32768 Гц. При использовании линейки делителей частоты на 2 на выходе делителей получают прямоугольные импульсы частотой 1 Гц. В небольших пределах рабочую частоту генератора можно понижать, подключая параллельно резонатору конденсатор небольшой емкости.

Обычно в радиоэлектронных устройствах используют LC и RC-генераторы. Менее известны LR-генераторы, хотя на их основе могут быть созданы устройства с индуктивными датчиками,

Рис. 35.11. Схема LR-генератора

Рис. 35.9. Схема генератора импульсов на компараторе LM 7 93

Рис. 35.10. Схема «часового» генератора импульсов

металлоискатели, обнаружители электропроводки, генераторы импульсов и т. д.

На рис. 35.11 приведена схема простого LR-геиератора прямоугольных импульсов, работающего в диапазоне частот 100 Гц — 10 кГц [35.6]. В качестве индуктивности и для звукового

контроля работы генератора используется телефонный капсюль ТК-67. Перестройка частоты осуществляется потенциометром R3.

Генератор работоспособен при изменении напряжения питания от 3 до 12,6 В. При понижении напряжения питания с 6 до 3—2,5 В верхняя частота генерации повышается с 10—11 кГц до 30—60 кГц.

Диапазон генерируемых частот может быть расширен до 7—1,3 МГц (для микросхемы К140УД1А) при замене телефонного капсюля и резистора R5 на катушку индуктивности. В этом случае при отключении диодного ограничителя на выходе устройства можно получить сигналы, близкие к синусоиде. Стабильность частоты генерации устройства сопоставима со стабильностью RC-генераторов.

Простые генераторы звуковых сигналов (рис. 35.12) могут быть выполнены на микросхемах К538УНЗ [35.7]. Для этого достаточно вход и выход микросхемы соединить конденсатором или его аналогом — пьезокерамическим капсюлем. В последнем случае капсюль выполняет также роль звукоизлучагеля.

Частоту генерации можно менять, подбирая емкость конденсатора. Параллельно или последовательно пьезокерамическому капсюлю для подбора оптимальной частоты генерации можно включить конденсатор. Напряжение питания генераторов 6—9 В.

Рис. 35.72. Генераторы звуковых частот на микросхеме

Для экспресс-проверки ОУ может быть использована схема генератора звуковых сигналов, представленная на рис. 35.13 [35.8]. Тестируемую микросхему DA1 типа К140УД6, К140УД7, К140УД608у К140УД708 или иных, имеющих аналогичную цоколевку, вставляют в панельку, после чего включают питание. В случае, если микросхема исправна, пьезокерамический капсюль НА1 излучает звуковой сигнал.

Рис. 35.13. Схема звукового генератора — испытателя ОУ

Рис. 35.14. Схема генератора прямоугольных импульсов на ОУКР1438УН2

Рис. 35.15. Схема генератора синусоидальных сигналов на ОУКР1438УН2

Генератор сигналов прямоугольной формы на частоту 1 кГц, выполненный на микросхеме КР1438УН2, показан на рис. 35.14 [35.9]. Генератор стабилизированных по амплитуде синусоидальных сигналов на частоту 1 кГц приведен на рис. 35.15 [35.9].

Схема генератора [35.10], вырабатывающего сигналы синусоидальной формы, представлена на рис. 35.16. Этот генератор работает в диапазоне частот 1600—5800 Гц, хотя при частотах свыше 3 кГц форма сигнала все более отдаляется от идеала, а амплитуда выходного сигнала падает на 40 %. При десятикратном увеличении емкостей конденсаторов С1 и С2 полоса перестройки генератора с сохранением синусоидальной формы сигнала понижается до 170—640 Гц при неравномерности амплитуды до 10 %.

Рис. 35.7 7. Схема генератора синусоидальных колебаний на частоту 400 Гц

Рис. 35.76. Схема генератора синусоидального напряжения

Схема генератора синусоидальных колебаний, работающего на фиксированной частоте, показана на рис. 35.17 [35.11].

Рабочая частота генератора определяется номиналами элементов СЗ—С5 и R4—R6. Для указанных на схеме номиналах генератор работает на частоте 400 Гц. Выходной сигнал на выводе 6 микросхемы DA1 достигает 0,5 В. Резистивным делителем R7 и R8 уровень выходного напряжения устройства регулируется в пределах от 0 до 25 мВ.

Читайте также:  Замена переключателя смесителя в ванной

Рис. 35.18. Схема НЧ-генератора синусоидальных сигналов

Генератор синусоидальных сигналов (рис. 35.18), работающий на фиксированной частоте 1,1 кГц, выполнен на микросхеме К140УД2. Хотя

в этом качестве можно использовать практически любую микросхему аналогичного назначения [35.12]. Для перестройки частоты генерации последовательно с резисторами R4 и R5 следует включить сдвоенный потенциометр. Ступенчато частоту генерации можно изменять, переключая емкости конденсаторов С2 и СЗ.

Рабочая частота генератора определяется по формулегде

/— в Гц R — в Ом; С — в Ф. Конденсаторы СЗ—СЮ — керамические.

Рис. 35.19. Схема многодиапазонного генератора синусоидальных сигналов

Четырехдиапазонный генератор синусоидальных колебаний на основе моста Вина выполнен на операционном усилителе СА3240 фирмы Harris Semiconductor, рис. 35.19 [35.13]. Эта микросхема отличается исключительно высоким входным сопротивлением (1,5 ТОм) и способна работать до частоты 4,5 МГц. Микросхема предназначена для замены распространенной микросхемы 741 (отечественный аналог К140УД6, К140УД7).

Генератор синусоидальных сигналов с плавной перестройкой рабочей частоты может быть выполнен по схеме, представленной на рис. 35.20 [35.14]. Выходное напряжение генератора в диапазоне частот 50 Гц —100 кГц составляет 2,5 В. При напряжении питания 12 В устройство потребляет ток до 20 мА. Коэффициент гармоник не превышает 0,02 %.

В мостовом генераторе (рис. 35.21) при выполнении условия R1=R2=R и С1=С2=С при R3=R4=R5 частота выходного сигнала синусоидальной формы

определяется из выражения f = г Д е / в кГц, R — в кОм, С ■

Рис. 35.20. Схема перестраиваемого генератора низкочастотных синусоидальных колебаний

Рис. 35.21. Схема мостового генератора синусоидальных сигналов

При R=1 кОм и С=0,1 мкФ частота генерируемого сигнала равна 1 кГц. Амплитуду выходного сигнала регулируют подбором номинала резистора R3 [35.15].

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.

Схема генератора высокой частоты, который вырабатывает сигналы в диапазоне от 10 до 50 МГц. Сигнал можно промодулировать по частоте подав НЧ напряжение от ГНЧ или микрофона. Девиация частоты зависит от величины этого напряжения ЗЧ. Если нужна девиация 50-100 кГц, то, при крайне верхнем .

Принципиальная схема самодельного генератора логических импульсов с частотой от 1 Гц до 10КГц, собран на микросхеме 4011 (К561ЛА7). При ремонте и налаживании схем на цифровых микросхемах может быть очень полезен генератор логических импульсов. В общем, это генератор прямоугольных импульсов .

Низкочастотный генератор синусоидального сигнала — очень важный прибор в лаборатории любого радиолюбителя.Возможно, такой уже есть у всех. Но все же хочу познакомить читателей журнала со своим генератором. Генератор выполнен в виде самостоятельного прибора, питающегося от электросети. Но шкала .

Простой самодельный генератор-пробник, с регулировкой выходной частоты от 100 Гц до 10000 Гц, выполнен на микросхеме К561ЛА7. Если нужно экспромтом проверить прохождение сигнала по аудиотракту многие корифеи пользуются собственным пальцем как генератором НЧ (50 Гц сетевых наводок), регулируя .

Принципиальная схема самодельного широкодиапазонного генератора синусоидального сигнала для лабораторных целей, выполнен на микросхеме МАХ038. Синусоидальный генератор является одним из важнейших приборов лаборатории радиолюбителя. Обычно делаютдва генератора, низкочастотный и высокочастотный .

Принципиальная схема простого генератора плавного диапазона на микросхеме HC4046, Частота до 50 MHz. Микросхема НС4046 (а так же аналогиMM74HC4046N, MJM74HC4046 и другие) представляет собой RC-генератор с ФАПЧ, способный генерировать стабильную частоту до 50 MHz, что позволяет сделать ГПД .

Приведена принципиальная схема низкочастотного генератора сигналов, который выполнен на ОУ КР140УД708. Низкочастотный генератор является одним из необходимейших приборов врадиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты .

Для питания электронных часов, а возможно и другой аппаратуры производства США и некоторых других стран, необходимо напряжение со стабильной частотой 60 Гц При наличии кварцевого резонатора на частоту 1966 08 кГц получить его несложно (см., например, статью В. Полякова “Преобразователь .

Предлагаемая конструкция генератора может быть использована при настройке каскадов радиоприемников, различных аналоговых и цифровых устройств. Генератор формирует низкочастотные (НЧ) и высокочастотные (ВЧ) синусоидальные и прямоугольные колебания. Диапазон ВЧ колебаний 0,15. 1,6 МГц с плавной .

Формирователь содержит RC-триггер, собранный на логических элементах 2И-НЕ, интегрирующую цепь R1, R2, С1 и инвертор на транзисторе V1. При высоком логическом уровне на входе формирователя на выходе 1 появится высокий логический уровень, а на выходе 2 — низкий. При поступлении на вход .

Комментировать
551 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector