No Image

Lc последовательный фильтр с трансформаторной связью выход

СОДЕРЖАНИЕ
924 просмотров
12 декабря 2019

Наиболее известными пассивными фильтрами являются LC фильтры, названные так потому, что строятся при помощи индуктивностей L и емкостей C. В настоящее время наиболее распространены сетевые фильтры или антенные фильтры.

Простейшим LC фильтром является колебательный контур, в котором могут возникать затухающие колебания, но нас интересует то его свойство, что LC-контур обладает частотной зависимостью коэффициента передачи. Колебательный контур может быть использован для реализации полосового фильтра. На рисунке 1 приведена схема параллельного колебательного контура, реализующая простейший пассивный LC фильтр.


Рисунок 1. Схема пассивного полосового фильтра на параллельном колебательном контуре

Пример амплитудно-частотной характеристики приведенной на рисунке 1 схемы LC фильтра приведен на рисунке 2.


Рисунок 2. Амплитудно-частотная характеристика схемы пассивного фильтра на параллельном контуре

По графику амплитудно-частотной характеристики данного LC фильтра можно определить, что его схема обладает одним полюсом и двумя нулями коэффициента передачи. Один ноль АЧХ соответствует нулевой частоте (постоянному току). Он определяется нулевым сопротивлением индуктивности на нулевой частоте. Второй ноль АЧХ приходится на частоту, равную бесконечности. Этот ноль соответствует нулевому сопротивлению конденсатора на бесконечной частоте. Именно наличием нулей объясняется несимметричность амплитудно-частотной характеристики полосовых LC фильтров. Во всех рассуждениях принимается, что конденсаторы и индуктивности идеальны, в реальных схемах LC фильтров придется учитывать паразитные составляющие элементов схемы.

На графике амплитудно-частотной характеристики пассивного фильтра, приведенной на рисунке 2, отчетливо видна несимметричность, которую приходится учитывать при переходе от полосового фильтра к ФНЧ-прототипу. Еще одна особенность, которая бросается в глаза на данном графике, это коэффициент передачи, больший единицы. В приведенном примере более 50 дБ. Выходной сигнал больше входного почти в тысячу раз! Пассивный LC фильтр обладает усилением? Нет и еще раз нет! Увеличено выходное напряжение, но ток при этом уменьшен. Просто этот фильтр трансформирует сопротивление. Его входное сопротивление меньше выходного. Параллельный контур нельзя шунтировать малым сопротивлением. LC фильтр, показанный на рисунке 1, работает подобно обычному трансформатору напряжения.

Полюс в схеме пассивного фильтра, приведенной на рисунке 1, реализуется параллельным LC контуром. Поэтому остановимся на свойствах параллельного контура подробнее. Известно, что в параллельном контуре возникает резонанс на частоте, определяемой следующей формулой:

(1),

Именно эта резонансная частота LC контура определяет частоту полюса пассивного фильтра. Следующим важным параметром параллельного LC контура (и полюса передачи разрабатываемого LC фильтра) является добротность. Добротность параллельного LC контура определяется как отношение его резонансной частоты к полосе пропускания амплитудно-частотной характеристики по уровню 3 дБ:

(2),

В схеме пассивного LC фильтра, приведенной на рисунке 1, добротность контура определяет, насколько напряжение на выходе схемы будет больше напряжения, поданного на его вход. Одновременно на выходе схемы уменьшится ток, отдаваемый в нагрузку.

Добротность параллельного LC контура зависит от многих факторов. Различают конструктивную добротность контура и нагруженную добротность. Конструктивная добротность зависит от качества исполнения элементов контура (индуктивностей и конденсаторов), а нагруженная добротность LC контура учитывает влияние сопротивления нагрузки.

(3),

Следует отметить, что схема пассивного LC фильтра, приведенная на рисунке 1, реализует не только полюс амплитудно-частотной характеристики, но и два нуля. Конденсатор C1 обеспечивает нулевой коэффициент передачи на частоте, стремящейся к бесконечности. Индуктивность L1 обеспечивает нулевой коэффициент передачи фильтра на нулевой частоте (постоянном токе). Подобная схема LC фильтра подходит для реализации полосовых фильтров Баттерворта и фильтров Чебышева.

Подобным же образом может работать и последовательный LC контур. Для этого он должен быть подключен между источником сигнала и нагрузкой. Пример включения последовательного LC контура для реализации полюса передачи амплитудно-частотной характеристики приведен на рисунке 3.


Рисунок 3. Схема LC фильтра на последовательном колебательном контуре

Особенность данной схемы пассивного фильтра заключается в том, что сопротивление источника сигнала R1 и нагрузки R2 должны быть как можно меньше при реализации полюса большей добротности. Это связано с тем, что в схеме LC фильтра, реализованной на последовательном контуре, используется резонанс токов.

Амплитудно-частотная характеристика пассивного фильтра, реализованного на последовательном LC контуре, ничем не отличается от АЧХ фильтра, реализованного на параллельном LC контуре. Амплитудно-частотная характеристика, приведенная на рисунке 2, может быть получена и схемой LC фильтра, приведенной на рисунке 3.

Для реализации фильтра низких частот LC контур в схеме пассивного фильтра можно включить немного по-другому. Например, так, как показано на рисунке 4.


Рисунок 4. Схема пассивного фильтра на LC контуре

В этом случае нули функции передачи, формируемые индуктивностью L1, и ёмкостью C1, совпадут и будут расположены на частоте, равной бесконечности. Амплитудно-частотная характеристика при этом преобразуется к виду, приведенному на рисунке 5.

Читайте также:  Дрель шуруповерт аккумуляторная патриот


Рисунок 5. Амплитудно-частотная характеристика схемы пассивного НЧ фильтра на LC контуре

Подобная схема пассивного фильтра подходит для реализации фильтра низких частот с аппроксимацией АЧХ по Баттерворту или Чебышеву. Тем не менее, LC фильтр c АЧХ, показанной на рисунке 5 (очень высокая добротность контура), может использоваться как полосовой фильтр, приводящий сопротивление нагрузки к сопротивлению источника сигнала.

Аналогичным образом может быть реализована схема LC фильтра высоких частот. Для реализации фильтра высоких частот в схеме пассивного фильтра необходимо оба нуля фунции передачи передвинуть на нулевую частоту (постоянный ток). Для этого схему LC контура включают следующим образом:


Рисунок 6. Схема пассивного фильтра высоких частот на LC контуре

Амплитудно-частотная характеристика данной схемы LC фильтра приобретает вид, показанный на рисунке 7. Естественно, для фильтра высоких частот обычно добротность выбирается меньше показанной на рисунке, и тогда она приобретает вид АЧХ фильтра Чебышева или Баттерворта.


Рисунок 7. Амплитудно-частотная характеристика схемы пассивного ВЧ фильтра на LC контуре

Наличия полюсов достаточно для реализации фильтров Чебышева, Баттерворта и Бесселя. Все рассмотренные выше схемы являются цепями второго порядка. Для реализации LC фильтров более высокого порядка их можно соединять последовательно. В качестве примера на рисунке 7 приведены схемы пассивных LC фильтров низкой частоты.





Рисунок 8. Схемы пассивных LC фильтров низкой частоты

Точно так же реализуются и фильтры Чебышева, Баттерворта и Бесселя высокой частоты. Отличие заключается в том, что индуктивность пересчитывается в емкость, а емкость пересчитывается в индуктивность. Полученные схемы пассивных фильтров высокой частоты приведены на рисунке 9.





Рисунок 9. Схемы пассивных LC фильтров высокой частоты

Применение расчета фильтров через ФНЧ-прототип позволяет рассчитать и полосовые фильтры. Преобразование фильтра низких частот в полосовой фильтр осуществляется заменой емкостей ФНЧ прототипа параллельными контурами, а индуктивностей — последовательными. Пример полосовых фильтров приведен на рисунке 10.



Рисунок 10. Схемы пассивных полосовых LC фильтров

В настоящее время пассивные LC фильтры рассчитываются при помощи специализированных программ, наиболее известные из которых входят в состав программных пакетов MicroCAP и AWR Office. Однако продолжают сохранять актуальность справочники по расчету фильтров такие как Ханзел Г. Е. Справочник по расчету фильтров [2] и Зааль Р. Справочник по расчету фильтров [1].

Следует отметить, что фильтры, рассчитываемые в MicroCAP и у Ханзела имеют одинаковое входное и выходное сопротивления, а фильтры, расчитываемые в AWR Office и у Зааля позволяют одновременно осуществлять трансформацию сопротивлений. Это свойство пассивных LC фильтров очень полезно при разработке высокочастотных усилителей (УВЧ).

Что касается полосовых LC фильтров, то в настоящее время они практически вытеснены кварцевыми или ПАВ-фильтрами, в области относительно низких частот (сотни килогерц) пьезокерамическими фильтрами. Исключение составляют перестраиваемые LC фильтры.

Это связано с достаточно высокой стоимостью изготовления индуктивностей, которые наматываются на ферритовых сердечниках. В случае сетевых фильтров, где широко применяются кольцевые ферритовые сердечники стоимость дополнительно повышается из-за сложности намотки обмотки индуктивности.

Вместе со статьёй "Схемы пассивных фильтров" читают:

LC-фильтр предназначен для подавления высокочастотных помех (частотой 100 Гц — 100 МГц), которые искажают синусоиду переменного напряжения в сети и отрицательно ск азываются на работе электрооборудования. Эффективность работы LC-фильтра в различных диапазонах частот измеряется в дБ. Источниками ВЧ-помех являются различные электрические устройства: электродвигатели, генераторы, сварочные аппараты и т. п.

На рисунке показан пример простейшего LC-фильтра нижних частот: при подаче сигнала определённой частоты на вход фильтра (слева), напряжение на выходе фильтра (справа) определяется отношением реактивных сопротивлений катушки индуктивности (XL = щL) и конденсатора (XC = 1 / щC).

Коэффициент передачи ФНЧ можно вычислить, рассматривая делитель напряжения, образованный частотно-зависимыми сопротивлениями. Комплексное (с учетом сдвига фаз между напряжением и током) сопротивление катушки индуктивности есть ZL = jщL = jXL и конденсатора ZC = 1 / (jщC) = ? jXC, где , поэтому, для ненагруженного LC-фильтра.

Подставляя значения сопротивлений, получим для частотно-зависимого коэффициента передачи:

Как видно, коэффициент передачи ненагруженного идеального ФНЧ неограниченно растет с приближением к частоте , и затем убывает. На очень низких частотах коэффициент передачи ФНЧ близок к единице, на очень высоких — к нулю. Вообще, зависимость модуля комплексного коэффицента передачи фильтра от частоты называют амлитудно-частотной характеристикой (АЧХ), а зависимость фазы — фазо-частотной характеристикой (ФЧХ).

В реальных схемах к выходу фильтра подключается активная нагрузка, которая понижает добротность фильтра и предотвращает острый резонанс АЧХ вблизи частоты щ0. Величину называют характеристическим сопротивлением фильтра. ФНЧ, нагруженный на сопротивление, равное характеристическому, имеет нерезонансную АЧХ, примерно постоянную для частот щ

Читайте также:  Деревянные головоломки своими руками чертежи

Аналогичным образом строится и LC-фильтр верхних частот. В схеме ФВЧ меняются местами катушка индуктивности и конденсатор. Для ненагруженного ФВЧ получается следующий коэффициент передачи:

На очень низких частотах модуль коэффициента передачи ФВЧ близок к нулю. На очень высоких — к единице.

2.1.1.3 .1 Применение

LC-фильтры используются в силовых электрических цепях для гашения помех и для сглаживания пульсаций напряжения после выпрямителя. В каскадах радиоэлектронной аппаратуры часто применяются перестраиваемые LC-фильтры, например, простейший LC-контур, включенный на входе средневолнового радиоприёмника обеспечивает настройку на определённую радиостанцию.

Фильтры используются в звуковой аппаратуре в многополосных эквалайзерах для корректировки АЧХ, для разделения сигналов низких, средних и высоких звуковых частот в многополосных акустических системах, в схемах частотной коррекции магнитофонов и др.

Разделительный трансформатор

Разделительный трансформатор — это трансформатор, первичная обмотка которого изолирована от вторичных обмоток при помощи защитного электрического разделения цепей с помощью двойной или усиленной изоляции, т.е. между обмотками имеется заземленный металлический защитный экран.

Трансформатор будет являться разделительным, если его вторичная обмотка не заземлена. Обычно используются трансформаторы с коэффициентом трансформации 1. Допускается подключение к одному трансформатору только одного потребителя. Применение такого подключения электроприемника существенно снижает вероятность поражения электрическим током, так как токи, возникающие в случае пробоя изоляции, имеют небольшое значение, что обусловлено гальванической изоляцией вторичных цепей трансформатора от цепей заземления.

Разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаний к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Они также могут обеспечивать гальваническую развязку электрических цепей. Для повышения электробезопасности, увеличения надежности и срока службы электрооборудования рекомендуется включение его в сеть через разделительный трансформатор.

Например, согласно "Правилам технической эксплуатации электроустановок" ванные комнаты входят в категорию особо опасных помещений из-за наличия повышенной влажности, текущей воды и обилия изделий из металла, имеющих неустойчивое заземление. В таких помещениях не должно быть розеток на 220 В, или же эти розетки должны быть включены через разделительный трансформатор.

Выбор разделительных трансформаторов по параметрам

— входное напряжение и силу тока (на первичной обмотке)

— выходное напряжение и силу тока (на вторичной обмотке)

— предельно допустимое напряжение между выходными зажимами и землёй

— тип и конфигурацию выводов

— способ монтажа (на плату, на DIN-рейку, навесной)

Из чего состоит LC-фильтр и как он работает, формулы для расчетов, принципиальные схемы LC-фильтров, статья для начинающих радиолюбителей. Во многих электронных устройствах применяются LC-фильтры, как видно по названию, эти фильтры состоят из индуктивности (L) и емкости (С).

Самый простой LC-фильтр

Самый простой LC-фильтр — это колебательный контур, включенный так как показано на рис. 1. Входное переменное напряжение поступает на контур через резистор R1, а выходное снимается с самого контура.

Вообще это очень похоже на делитель напряжения на двух резисторах, но вместо одного из резисторов здесь контур. В сущности дела оно так и есть.

На резонансной частоте реактивное сопротивление контура сильно возрастает, а значит, коэффициент деления такого делителя уменьшается.

Эта схема (рис.1) действует как узкополосной полосовой фильтр, центральную частоту кото-рого можно рассчитать по известной формуле:

, где частота в Гц, индуктивность в Гн, емкость в Ф. Сопротивление контура на резонансной частоте:

где р — характеристическое сопротивление, равное реактивному сопротивлению катушки и конденсатора. Величину р можно рассчитать по формуле:

А вот рассчитать добротность Q значительно сложнее. Эта величина зависит от потерь в контуре. Так как конденсатор обычно вносит минимум потерь, то добротность контура чаще всего практически равна добротности индуктивности, входящей в состав этого контура.

Резонансную частоту и добротность можно определить измерениями. Нужно собрать схему по рисунку 2. Это практически такая же схема как на рис.1.

Переменное напряжение, соответствующее по частоте расчетному значению подают от генератора «Г» на контур через сопротивление R1. Подстраивая генератор нахо-дят такую частоту, при которой возникает резонанс, то есть, при которой вольтметр переменного тока Р1 показывает наибольшую величину.

Рис. 1. Схема LC-фильтра.

Рис. 2. Схема для измерения резонансной частоты и добротности.

Эта частота и будет реальной резонансной частотой. Она может отличаться от расчетной из-за погрешностей величин емкости и индуктивности. В идеале -равна расчетной.

На частоте резонанса R1 и резонансное сопротивление контура Ro образуют делитель напряжения, поэтому выходное напряжение Uвых = Uвх * Ro / (R1+Ro).

Читайте также:  Rockwool флор баттс отзывы

Измерив входное напряжение Uвх и выходное Uвых из этой формулы можно найти резонансное сопротивление контура Ro, ну а потом, зная величину характеристического сопротивления (из формулы

можно из формулы Ro=pQ найти добротность Q. Другой параметр LC-фильтра — это полоса пропускания

где — это отклонение частоты входного напряжения от резонанса в ту или другую сторону, при которой выходное напряжение, соответствующее резонансу (Uвых), уменьшается до 0,7Uвых. Зная величину полосы пропуская можно найти добротность по формуле Q=Fo/(2*дельтаF).

Таким образом становится ясно, что полоса пропускания LC-фильтра прежде всего зависит от добротности контура. При этом нужно учесть, что таким образом будет определена не собственная добротность контура, а величина меньше, из-за шунтирующего действия резистора R1.

Недостаток фильтра по рисунку 1 в том, что на него оказывает сильное влияние величина выходного сопротивления источника входного переменного напряжения.

Автотрансформаторное и трансформаторное включение

Желая получить более острую резонансную кривую, можно использовать трансформаторное (рис.3) или автотрансформаторное (рис.4) включение для подачи входного напряжения.

Рис. 3. Трансформаторное включение.

Рис. 4. Автотрансформаторное включение.

Число витков катушки связи (рис.З) или число витков отвода (считая от заземленного конца катушки) можно определить из формулы: R1 = Ro(N/No)^2 , где R1 — это фактически и есть выходное сопротивление источника входного переменного напряжения, Ro — сопротивление контура на резонансной частоте, N — число витков катушки связи (или число витков, от которых сделан отвод), No — число витков контурной катушки (или общее число витков катушки, если по рис.4).

Рис. 5. Емкостный автотрансформатор.

Совсем не обязательно делать отвод именно от катушки, можно сделать отвод и от конденсатора, вернее от емкостной составляющей контура. Так получится — емкостный автотрансформатор (рис. 5).

А соотношение емкостей для определенной величины выходного сопротивления источника сигнала можно определить из формулы: R1 = Ro * C1^2 / (C1+C2)^2.

На контур может оказывать шунтирующее влияние не только выходное сопротивление источника Uвх, но и входное сопротивление каскада, на который с контура поступает выходное напряжение Uвых (R2 на рис. 6). Особенно если входное сопротивление каскада (R2) невелико (сопоставимо или даже меньше Ro).

Рис. 6. Схема фильтра.

В этом случае необходимо сначала вычислить новое значение Ro, уменьшенное параллельным включением сопротивления R2. Расчет производить по известной формуле параллельных сопротивлений: R = (RoR1) / (Ro+R2). А потом уже рассчитывать согласование (взяв полученную величину R как Ro в формулах).

Контуры с индуктивной и емкостной связью

Параметры узкополосного фильтра можно существенно улучшить, используя в нем несколько контуров. Связь между этими контурами может быть индуктивной (рис. 7) или емкостной (рис. 8).

Рис. 7. Контуры с индуктивной связью.

При индуктивной связи коэффициент взаимной индукции выбирается в Q раз меньше индуктивности катушек, а емкость конденсатора связи — в Q раз меньше емкостей контурных конденсаторов.

Рис. 8. Контуры с емкостной связью.

Подача сигнала последовательно

Сигнал на контур можно подавать не только параллельно, но и последовательно, как показано на рис. 9. При этом, в отличие от схемы на рис. 6, сопротивление R1 (сопротивление источника сигнала) для получения острой характеристики нужно выбирать как можно меньше, а вот входное сопротивление каскада (R2) должно быть как и на рис. 6, как можно больше.

Рис. 9. Последовательная подача сигнала на контур.

Если в схеме на рис. 9 соблюсти зависимость: R1 = R2 = p, то получается согласованный ФНЧ (фильтр нижних частот), коэффициент передачи которого постоянен на всех частотах от нуля, до резонансной частоты контура, и равен -6dB, но выше частоты резонанса коэффициент передачи начинает резко падать по 12 dB на октаву. Это соответствует фильтру второго порядка.

Т-образный и П-образный фильтры

Для получения более крутых скатов характеристики можно два таких фильтра, как на рис. 9 («Г»-образных) соединить и получить «Т»-образный фильтр (рис. 10).

Рис. 10. Т-образный фильтр.

Обратите внимание, — конденсатор должен быть двойной емкости по сравнению с рис.9. Либо сделать «П»-образный фильтр (рис. 11), в котором двойное значение должна иметь индуктивность. Это будет уже ФНЧ третьего порядка.

Рис. 11. П-образный фильтр.

Возможно и дальнейшее наращивание, например, на рисунке 12 показан ФНЧ пятого порядка обладающий спадом характеристики на частотах выше резонансной 30 dB на октаву.

Рис. 12. Схема ФНЧ пятого порядка.

Фильтры высших частот ФВЧ отличаются тем, что ослабляют частоты ниже частоты резонанса. ФВЧ можно сделать, если в показанных на рисунках 9-12 индуктивности и емкости поменять местами.

Комментировать
924 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector