No Image

Lm2596 схема блока питания

СОДЕРЖАНИЕ
537 просмотров
12 декабря 2019

LM2596 — понижающий преобразователь постоянного тока, он выпускается часто в виде готовых модулей, около 1 доллара ценой (в поиске LM2596S DC-DC 1.25-30 В 3A). Заплатив же 1,5 доллара, на Али можно взять похожий модуль с LED индикацией об входном и выходном напряжении, выключение выходного напряжения и точной настройкой кнопками с отображением значений на цифровых индикаторах. Согласитесь — предложение более чем заманчивое!

Ниже приводится принципиальная схема данной платы преобразователя (ключевые компоненты отмечены на картинке в конце). На входе есть защита от переполюсовки — диода D2. Это позволит предотвратить повреждения регулятора неправильно подключенным входным напряжением. Несмотря на то, что микросхема lm2596 может обрабатывать согласно даташита входные напряжения вплоть до 45 В, на практике входное напряжение не должно превышать 35 В при длительном использовании.

Для lm2596, выходное напряжение определяется уравнением, приведённым ниже. Резистором R2 выходное напряжение можно регулировать в пределах от 1.23 до 25 В.

Хотя микросхема lm2596 рассчитана на максимальный ток 3 А непрерывной работы, малая поверхность фольги-массы не достаточна, чтобы рассеять выделяемое тепло во всём диапазоне работы схемы. Также отметим, что КПД этого преобразователя варьируется весьма сильно в зависимости от входного напряжения, выходного напряжения и тока нагрузки. Эффективность может колебаться от 60% до 90% в зависимости от условий эксплуатации. Поэтому теплоотвод является обязательным, если непрерывная работа идёт при токах более чем 1 А.

Согласно даташиту, конденсатор прямой связи необходимо устанавливать параллельно резистору R2, особенно когда напряжение на выходе превышает 10 В — это нужно для обеспечения стабильности. Но этот конденсатор часто не присутствует на китайских недорогих платах инверторов. В ходе экспериментов были проверены несколько экземпляров DC преобразователей в различных условиях эксплуатации. В итоге пришли к выводу, что стабилизатор на ЛМ2596 хорошо подходит для низких и средних токов питания цифровых схем, но для более высоких значений выходной мощности необходим теплоотвод.

Микросхема LM2596 это монолитный DC-DC преобразователь постоянного напряжения 3-40 вольт до уровня 3.3, 5, 12 вольт, с максимальным током нагрузки до 3 A. Есть версии с регулируемым выходом. Устройство характеризуется наличием внутренней частотной компенсации, рабочей частотой 150 кГц, защитной схемой от короткого замыкания и полного отключения при перегреве. Применяется в регулируемых импульсных блоках питания, стабилизаторах, светодиодных драйверах и др.

Читайте также:  Детская в прованском стиле

Распиновка

Корпус устройства имеет пять контактов, которые имеют следующее назначение:

  1. входное напряжение (VIN);
  2. преобразованное выходное напряжение (VOUT);
  3. общий контакт (Gnd);
  4. для обратной связи (Feedback);
  5. включение/выключение (ON/OFF).

Производится в классическом корпусе TO-220 (модель LM2596T), с различными вариантами свинцового изгиба и для поверхностного монтажа TO-263 (модель LM2596S), D2PAK-5.

Характеристики lm2596 DC-DC

Микросхема lm2596 имеет следующие технические характеристики:

  • Напряжение — вход: от 4 до 40 В (до 60 вольт в версии HV);
  • Напряжение — выход: от 1.25 до 37 В (фиксированное/регулируемое);
  • Номинальный выходной ток: 2 А;
  • Максимальный выходной ток, с теплоотводом: до 3 А;
  • Выходная пульсация: Маркировка

Устройство выпускается с фиксированным и регулируемым выходным напряжением. Обычно, производители указывают номиналы выходного напряжения через дефис на корпусе микросхемы, например -3.3, -5.0, -12. Если выходное питание регулируемое, то в конце маркировки указано adj, например lm2596t adj.

Hw 411 dc-dc, c таким дополнением в наименовании товара продаются уже готовые модули регулируемых блоков питания, в которых lm2596s-adj или его аналоги является основным элементом. Такие сборки еще называют регулируемыми стабилизаторами напряжения на lm2596. Встречаются HW-411 на базе более новой микросхемы XL4015, с улучшенными характеристиками по току до 5 А. Некоторые производители оснащают HW 411 дисплеем, он отображает информацию о его работе и выдаваемом выходном питании.

Регулировка

Для получения требуемого уровня выходного напряжения надо изменить сопротивление в цепи обратной связи микросхемы. Вот функциональная блок-схема понижающего модуля lm2596 dc dc.

Таким образом, надо подключить к контакту Feedback переменный резистор. В зависимости от версии микросхемы он будет соединен последовательно с внутренним резистором R2. Путем изменения сопротивления переменного резистора, надо добиться необходимого уровня на выходе микросхемы.

Типовые схемы включения

Порядок подбора элементов и схемы включения с фиксированным и регулируемым питанием приведен в техническом описании устройства. В зависимости от требуемого выходного напряжения и тока в нагрузке, подбирают катушку индуктивности (L1), управляющий диод (D1), конденсаторы на выходе (COUT) и входе (CIN) микросхемы. Управляющий диод подбирают, учитывая возможное появление короткого замыкания на выходе микросхемы. Типовая схема с регулируемым выходным напряжением приведена ниже.

Читайте также:  Вкусный и легкий в приготовлении торт

Данная схема взята из datasheet от производителя Texas Instrument. Это техническое описание включает онлайн-калькулятор для подбора элементов для этой схемы. Для использования его придется пройти процедуру регистрации на сайте производителя. В связи с популярностью устройства, в сети встречаются перевод технического описания на русском языке.

Меры безопасности

Не допускайте перегрева устройства, особенно при потреблении тока в нагрузке более 2 А. При увеличении потребляемой мощности потребуется охлаждение.

При подаче напряжения не перепутайте плюс с минусом. Неправильное подключение к источнику питания, чаще всего, приводит к выходу устройства из строя.

Аналоги

В качестве замены могут подойти следующие интегральные схемы: LM2678, L5973D, ST1S10, ST1S14, XL4015.

Содержание / Contents

Я купил на ebay модули, как на фото выше. Хотя на сайте были показаны твердотельные конденсаторы на напряжение 50 В, аукцион оправдал своё имя. Конденсаторы обычные, а половина модулей с конденсаторами на напряжение 16 В.

↑ . это трудно назвать стабилизатором.

Это трудно назвать стабилизатором.
Причина проста и понятна: конденсатор на плате 200 мкФ, он служит только для нормальной работы DC-DC преобразователя. При подаче на вход напряжения от лабораторного блока питания, всё было нормально. Выход очевиден: надо питать стабилизатор от источника с малыми пульсациями, т. е. добавить после моста ёмкость.

Вот напряжение при нагрузке 1,5 А на входе модуля без дополнительного конденсатора.

Падение напряжения на модуле DC-DC должно быть минимум 2…2,5 В.

Теперь можно смотреть пульсации на выходе импульсного преобразователя.

На плате красным цветом показано место для установки перемычки – общего провода двух каналов, стрелкой – место для припаивания общего провода, если не использовать клеммы.

Посмотрим, что стало с ВЧ-пульсациями.

Их больше нет. Остались небольшие пульсации с частотой 100 Гц.
Неидеально, но неплохо.
Замечу, что при увеличении выходного напряжения, дроссель в модуле начинает дребезжать и на выходе резко растёт ВЧ-помеха, стоит напряжение чуть уменьшить (всё это при нагрузке 12 Ом), помехи и шум полностью пропадают.

Для монтажа модуля я применил самодельные «стойки» из луженого провода диаметром 1 мм.

Читайте также:  Podvorje ru личный кабинет

Это обеспечило удобный монтаж и охлаждение модулей. Стойки можно сильно нагревать при пайке, они не сместятся в отличие от простых штырей. Эта же конструкция удобна, если надо припаять к плате внешние провода – хорошая жесткость и контакт.
Плата позволяет легко заменить при необходимости модуль DC-DC.

Общий вид платы с дросселями от половинок какого-то ферритового сердечника (индуктивность не критична).

↑ Итоговая схема включения:

При длительной нагрузке током 1 А детали заметно нагреваются: диодный мост, микросхема, дроссель модуля, больше всего дроссель (дополнительные дроссели холодные). Нагрев на ощупь 50 градусов.

При работе от лабораторного блока питания, нагрев при токах 1,5 и 2 А терпимый в течение нескольких минут. Для длительной работы с большими токами желателен теплоотвод на микросхему и дроссель большего размера.

Несмотря на крошечные размеры модуля DC-DC, общие размеры платы получились соизмеримыми с платой аналогового стабилизатора.

↑ Выводы:

1. Необходим трансформатор с сильноточной вторичной обмоткой или с запасом по напряжению, в этом случае ток нагрузки может превышать ток обмотки трансформатора.

2. При токах порядка 2 А и более желателен небольшой теплоотвод на диодный мост и микросхему 2596.

3. Конденсатор питания желателен большой ёмкости, это благоприятно сказывается на работе стабилизатора. Даже крупная и качественная ёмкость немного нагревается, следовательно желательно малое ESR.

4. Для подавления пульсаций с частотой преобразования, LC фильтр на выходе необходим.

5. Данный стабилизатор имеет явное преимущество перед обычным компенсационным в том, что может работать в широком диапазоне выходных напряжений, при малых напряжениях можно получить на выходе ток больше, чем может обеспечить трансформатор.

6. Модули позволяют сделать блок питания с неплохими параметрами просто и быстро, обойдя подводные камни изготовления плат для импульсных устройств, то есть хороши для начинающих радиолюбителей.

↑ Файлы:

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Комментировать
537 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector