No Image

В каких единицах си измеряется электрическая проводимость

СОДЕРЖАНИЕ
257 просмотров
12 декабря 2019

Сименс (обозначение: См, S) — единица измерения электрической проводимости в системе СИ, величина обратная ому.

Сименс (англ. siemens ) — единица электрической проводимости, адмитанса (полной проводимости) и реактивной проводимости в системе СИ и в системе метр-килограмм-секунда. Наиболее важной характеристикой проводника является величина тока, протекающего через него, когда приложено электрическое напряжение. Проводник имеет проводимость один сименс, если разность потенциалов один вольт создаёт в проводнике ток в один ампер. Проводимость проводника в сименсах является обратной величиной к его сопротивлению в омах; сименс раньше назывался "мо" (mho) или обратный ом.

Сименс — единица измерения электропроводности (проводимости) в системе СИ. Она эквивалентна ранее использовавшейся единице mho . Обычно проводимость обозначают символом G, но для ионной проводимости принято использовать символ L.

Иными словами, проводимость в сименсах – это просто единица, делённая на сопротивление в омах. В уравнениях проводимость обозначается буквой G.

“Siemens” является формой единственного и множественного числа; “1 siemen” – неправильное написание.

До Второй мировой войны (в СССР до 1960-х годов) сименсом называлась единица электрического сопротивления, соответствующая сопротивлению столба ртути длиной 1 м и диаметром 1 мм при 0 °C. Она соответствует примерно 0,9534 Ом. Эта единица была введена Сименсом в 1860 году и конкурировала с Омом, который победил на Всемирном конгрессе Электротехников в 1881 году. Тем не менее, единица широко использовалась связистами во всём мире до середины XX века.

Через другие единицы измерения СИ сименс выражается следующим образом:

См = 1 / Ом = А / В = кг-1·м-2·с³А²

Единица названа в честь немецкого учёного и предпринимателя Вернера фон Сименса.

Раньше применялось название мо, обозначалось перевёрнутой буквой Ω: mho (в Юникоде U+2127, ℧).

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 См декасименс даСм daS 10−1 См децисименс дСм dS
102 См гектосименс гСм hS 10−2 См сантисименс сСм cS
103 См килосименс кСм kS 10−3 См миллисименс мСм mS
106 См мегасименс МСм MS 10−6 См микросименс мкСм µS
109 См гигасименс ГСм GS 10−9 См наносименс нСм nS
1012 См терасименс ТСм TS 10−12 См пикосименс пСм pS
1015 См петасименс ПСм PS 10−15 См фемтосименс фСм fS
1018 См эксасименс ЭСм ES 10−18 См аттосименс аСм aS
1021 См зеттасименс ЗСм ZS 10−21 См зептосименс зСм zS
1024 См йоттасименс ИСм YS 10−24 См йоктосименс иСм yS
применять не рекомендуется

Электрическая проводимость тел оценивается количественно в специальных единицах, называемых сименс (сокращенно См), и обозначается символом G. 1 См — это электрическая проводимость проводника, между концами которого создается напряжение 1 В при силе тока 1 А. Электрическая проводимость тела пропорциональна площади его поперечного сечения S и обратно пропорциональна его длине I

Препятствие, которое преодолевает ток при прохождении по проводнику, называется электрическим сопротивлением. За единицу электрического сопротивления принят 1 ом. Ом определяется как сопротивление, оказываемое неизменяющемуся электрическому току при температуре тающего льда ртутным столбом, имеющим повсюду одинаковое поперечное сечение, равное 1 мм , длину 106,300 см и массу 14,4521 г. Величина, обратная величине электрического сопротивления, называется электропроводностью, или проводимостью. Единицей электропроводности считается сименс, равный одному обратному ому. Электрическое сопротивление будет тем больше, чем больше длина

Как правило, электрической проводимостью обладают проводники и полупроводники. Диэлектрики не проводят ток, а следовательно и не имеют проводимости.

Помимо электрической проводимости измеряют еще и удельную проводимость материала. Она показывает отношение между проходящим через материал током и электрическим полем, которое его вызвало.

Электрическая проводимость характеризует способность тела проводить электрический ток. Проводимость — величина обтаная сопротивлению. В формуле она обратно пропорциональна электрическому сопротивлению, и используются они фактически для обозначения одних и тех же свойств материала. Измеряется проводимость в Сименсах: [См]=[1/Ом].

Читайте также:  Декупаж новогодних шаров своими руками пошаговая инструкция

Электронная проводимость, где переносчиками зарядов являются электроны. Такая проводимость характерна в первую очередь для металлов, но присутствует в той или иной степени практически в любых материалах. С увеличением температуры электронная проводимость снижается.

Ионная проводимость. Существует в газообразных и жидких средах, где имеются свободные ионы, которые также переносят заряды, перемещаясь по объёму среды под действием электромагнитного поля или другого внешнего воздействия. Используется в электролитах. С ростом температуры ионная проводимость увеличивается, поскольку образуется большее количество ионов с высокой энергией, а также снижается вязкость среды.

Дырочная проводимость. Эта проводимость обуславливается недостатком электронов в кристаллической решётке материала. Фактически, переносят заряд здесь опять же электроны, но они как бы движутся по решётке, занимая последовательно свободные места в ней, в отличии от физического перемещения электронов в металлах. Такой принцип используется в полупроводниках, наряду с электронной проводимостью.

Самыми первыми материалами, которые стали использоваться в электротехнике исторически были металлы и диэлектрики (изоляторы, которым присуща маленькая электрическая проводимость). Сейчас получили широкое применение в электронике полупроводники. Они занимают промежуточное положение между проводниками и диэлектриками и характеризуются тем, что величину электрической проводимости в полупроводниках можно регулировать различным воздействием. Для производства большинства современных проводников используются кремний, германий и углерод. Кроме того, для изготовления ПП могут использоваться другие вещества, но они применяются гораздо реже.

В электротехнике важное значение имеет передача тока с минимальными потерями. В этом отношении важную роль играют металлы с большой электропроводностью и, соответственно, маленьким электросопротивлением. Самым лучшим в этом отношении является серебро (62500000 См/м), далее следуют медь (58100000 См/м), золото (45500000 См/м), алюминий (37000000 См/м). В соответствии с экономической целесообразностью чаще всего используются алюминий и медь, при этом медь по проводимости совсем немного уступает серебру. Все остальные металлы не имеют промышленного значения для производства проводников.

См. также: Портал:Физика

Электропроводность (электри́ческая проводи́мость, проводимость) — способность тела (среды) проводить электрический ток, свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению [1] .

В Международной системе единиц (СИ) единицей измерения электрической проводимости является сименс (русское обозначение: См; международное: S), определяемый как 1 См = 1 Ом −1 , то есть, как электрическая проводимость участка электрической цепи сопротивлением 1 Ом [2] .

Также термин электропроводность (электропроводность среды, вещества) применяется для обозначения удельной электропроводности (см. ниже).

Под электропроводностью подразумевается способность проводить прежде всего постоянный ток (под воздействием постоянного поля), в отличие от способности диэлектриков откликаться на переменное электрическое поле колебаниями связанных зарядов (переменной поляризацией), создающими переменный ток. Ток проводимости практически не зависит от частоты приложенного поля (до определенных пределов, в области низких частот).

Электропроводность среды (вещества) связана со способностью заряженных частиц (электронов, ионов), содержащихся в этой среде, достаточно свободно перемещаться в ней. Величина электропроводности и ее механизм зависят от природы (строения) данного вещества, его химического состава, агрегатного состояния, а также от физических условий, прежде всего таких, как температура.

Содержание

Удельная электропроводность [ править | править код ]

Удельной электропроводностью (удельной проводимостью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

J → = σ E → , <displaystyle <vec >=sigma ,<vec >,>

σ <displaystyle sigma >— удельная проводимость, J → <displaystyle <vec >>— вектор плотности тока, E → <displaystyle <vec >>— вектор напряжённости электрического поля.

  • Электрическая проводимость G однородного проводника длиной L с постоянным поперечным сечением площадью S может быть выражена через удельную проводимость вещества, из которого сделан проводник:
Читайте также:  Дизельный генератор промышленный цена

G = σ S L . <displaystyle G=sigma <frac >.>

  • В системе СИ удельная электропроводность измеряется в сименсах на метр (См/м) или в Ом −1 ·м −1 . В СГСЭ единицей удельной электропроводности является обратная секунда (с −1 ).

В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.

Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:

J i = ∑ k = 1 3 σ i k E k , <displaystyle J_=sum limits _^<3>sigma _,E_,>

при этом векторы плотности тока и напряжённости поля в общем случае не коллинеарны.

Для любой линейной среды можно выбрать локально (а если среда однородная, то и глобально) т. н. собственный базис — ортогональную систему декартовых координат, в которых матрица σ i k <displaystyle sigma _> становится диагональной, то есть приобретает вид, при котором из девяти компонент σ i k <displaystyle sigma _> отличными от нуля являются лишь три: σ 11 <displaystyle sigma _<11>> , σ 22 <displaystyle sigma _<22>> и σ 33 <displaystyle sigma _<33>> . В этом случае, обозначив σ i i <displaystyle sigma _> как σ i <displaystyle sigma _> , вместо предыдущей формулы получаем более простую

J i = σ i E i . <displaystyle J_=sigma _E_.>

Величины σ i <displaystyle sigma _> называют главными значениями тензора удельной проводимости. В общем случае приведённое соотношение выполняется только в одной системе координат [3] .

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Вообще говоря, линейное соотношение, написанное выше (как скалярное, так и тензорное), верно в лучшем случае [4] приближённо, причём приближение это хорошо только для сравнительно малых величин E . Впрочем, и при таких величинах E , когда отклонения от линейности заметны, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения, тогда как другие, старшие, члены разложения дадут поправки, обеспечивающие хорошую точность.

Также в случае нелинейной зависимости J от E (то есть в общем случае) может явно вводиться дифференциальная удельная электропроводность, зависящая от E :

σ = d J / d E <displaystyle sigma =dJ/dE> (для анизотропных сред: σ i k = d J i / d E k <displaystyle sigma _=dJ_/dE_> ).

Электропроводность и носители тока [ править | править код ]

Электропроводность всех веществ связана с наличием в них носителей тока (носителей заряда) — подвижных заряженных частиц (электронов, ионов) или квазичастиц (например, дырок в полупроводнике), способных перемещаться в данном веществе на большое расстояние, упрощенно можно сказать, что имеется в виду что такая частица или квазичастица должна быть способна пройти в данном веществе сколь угодно большое, по крайней мере макроскопическое, расстояние, хотя в некоторых частных случаях носители могут меняться, рождаясь и уничтожаясь (вообще говоря, иногда, возможно, и через очень небольшое расстояние), и переносить ток, сменяя друг друга [5] .

Поскольку плотность тока определяется формулой

j → = q n v → c p . <displaystyle <vec >=qn<vec >_> для одного типа носителей, где q — заряд одного носителя, n — концентрация носителей, vср. — средняя скорость их движения,

j → = ∑ i q i n i v → i c p . <displaystyle <vec >=sum _q_n_<vec >_> для более чем одного вида носителей, нумеруемых индексом i, принимающим значение от 1 до количества типов носителей, у каждого из которых может быть свой заряд (отличающийся величиной и знаком), своя концентрация, своя средняя скорость движения (суммирование в этой формуле подразумевается по всем имеющимся типам носителей),

Читайте также:  Арматура на разрыв таблица

то, учитывая, что (установившаяся) средняя скорость каждого типа частиц при движении в конкретном веществе (среде) пропорциональна приложенному электрическому полю (в том случае, когда движение вызвано именно этим полем, что мы здесь и рассматриваем):

v → c p . = μ E → , <displaystyle <vec >_=mu <vec >,>

где μ — коэффициент пропорциональности, называемый подвижностью и зависящий от вида носителя тока в данной конкретной среде [6] ,

видим, что для электропроводности справедливо:

σ = q n μ <displaystyle sigma =qnmu >

σ = ∑ i q i n i μ i <displaystyle sigma =sum _q_n_mu _> для более чем одного вида носителей.

Механизмы электропроводности и электропроводность различных классов веществ [ править | править код ]

Электропроводность металлов [ править | править код ]

Ещё до открытия электронов было обнаружено, что протекание тока в металлах, в отличие от тока в жидких электролитах, не обусловлено переносом вещества металла. Эксперимент, который выполнил немецкий физик Карл Виктор Эдуард Рикке (Riecke Carl Viktor Eduard) в 1901 году, состоял в том, что через контакты различных металлов, — двух медных и одного алюминиевого цилиндра с тщательно отшлифованными торцами, поставленными один на другой, в течение года пропускался постоянный электрический ток. Затем исследовался состав материала вблизи контактов. Оказалось, что переноса вещества металла через границу не происходит и вещество по разные стороны границы раздела имеет тот же состав, что и до пропускания тока. Таким образом было показано, что перенос электрического тока осуществляется не атомами и молекулами металлов. Однако эти опыты не дали ответа на вопрос о природе носителей заряда в металлах [7] .

Связь с коэффициентом теплопроводности [ править | править код ]

Закон Видемана — Франца, выполняющийся для металлов при высоких температурах, устанавливает однозначную связь удельной электрической проводимости σ <displaystyle sigma > с коэффициентом теплопроводности K :

K σ = π 2 3 ( k e ) 2 T , <displaystyle <frac <sigma >>=<frac <pi ^<2>><3>><left(<frac >
ight)^<2>>T,>

где k — постоянная Больцмана, e — элементарный заряд. Эта связь основана на том факте, что как электропроводность, так и теплопроводность в металлах обусловлены движением свободных электронов проводимости.

Электропроводность растворов [ править | править код ]

Скорость движения ионов зависит от напряженности электрического поля, температуры, вязкости раствора, радиуса и заряда иона и межионного взаимодействия.

У растворов сильных электролитов наблюдается характер концентрационной зависимости электрической проводимости объясняется действием двух взаимнопротивоположных эффектов. С одной стороны, с ростом разбавления уменьшается число ионов в единице объёма раствора. С другой стороны, возрастает их скорость за счет ослабления торможения ионами противоположного знака.

Для растворов слабых электролитов наблюдается характер концентрационной зависимости электрической проводимости можно объяснить тем, что рост разбавления ведёт, с одной стороны, к уменьшению концентрации молекул электролита. В то же время возрастает число ионов за счёт роста степени ионизации.

В отличие от металлов (проводники 1-го рода) электрическая проводимость растворов как слабых, так и сильных электролитов (проводники 2-го рода) при повышении температуры возрастает. Этот факт можно объяснить увеличением подвижности в результате понижения вязкости раствора и ослаблением межионного взаимодействия

Электрофоретический эффект — возникновение торможения носителей вследствие того, что ионы противоположного знака под действием электрического поля двигаются в направлении, обратном направлению движения рассматриваемого иона

Релаксационый эффект — торможение носителей в связи с тем, что ионы при движении расположены асимметрично по отношению к их ионным атмосферам. Накопление зарядов противоположного знака в пространстве за ионом приводит к торможению его движения.

При больших напряжениях электрического поля скорость движения ионов настолько велика, что ионная атмосфера не успевает образоваться. В результате электрофоретическое и релаксационное торможение не проявляется.

Удельная электропроводность некоторых веществ (таблица) [ править | править код ]

Удельная проводимость приведена при температуре +20 °C [8] :

Комментировать
257 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector