No Image

Величина заряда обратного восстановления силового диода

155 просмотров
12 декабря 2019

Когда диод закрывается, сохраненный в нем заряд должен разрядиться, это приводит к росту тока диода в обратном направлении. Кривая этого тока характеризует режим обратного восстановления диода.

На рис.1.19 показана простейшая цепь для измерения режима.


Рис. 1.19
S — идеальный ключ, IL — источник тока, VK — источник напряжения, LK — индуктивность

После закрывания ключа S, через диод будет протекать ток и напряжение, как это показано на рис.1.20. Этот график служит примером мягкого восстановления диода. На рис.1.21 показаны примеры характеристик диодного тока с резким изменением параметров. Кривая поясняется рисунком 1.20.


Рис.1.20 Характеристики тока и напряжения процесса «мягкого» восстановления диода в цепи на рис.1.19 и определение характеристик режима восстановления

Скорость коммутации dI/dt определяется напряжением и индуктивностью:

В момент t ток проходит через ноль. В момент tw диод начинает закрываться. При этом pn-переход диода освобождается от носителей заряда. При tirm ток падает до уровня тока утечки, характеристика тока зависит только от диода.

Время обратного восстановления trr определяется интервалом между t и моментом, когда ток достигает значения 20 % от IRRM. Интервалы tf и ts (рис.1.20) определяются количественными значениями для режима восстановления:

коэффициент «мягкости» s = tf / ts (1.2)

Этого определения недостаточно, потому что характеристика на рис.1.21а может быть резкой. Характеристику на рис.1.21b можно классифицировать как мягкую, tf > ts, но это жесткий срез.


Рис. 1.21. Характеристики тока для двух режимов быстрого восстановления диода

Более точно можно найти коэффициент «мягкости»

Измерения нужно проводить при токе менее чем 10 % и при 200 % установленного тока. Это означает, что малые токи очень влияют на режим обратного восстановления. Перенапряжения можно найти по закону:

Поэтому перенапряжения при некоторых условиях измерения или импульс напряжения VM = VK + Vind могут также рассматриваться как характеристики режима обратного восстановления. Но этого определения также недостаточно, так как не учитываются следующие параметры:

  1. Температура. Высокие температуры оказывают негативное воздействие на режим восстановления. Но для некоторых быстрых диодов этот режим хуже при температуре окружающей среды или при низких температурах.
  2. Приложенное напряжение. Высокое напряжение замедляет обратное восстановление.
  3. Скорость нарастания тока dI/dt. Зависимость dI/dt во многом зависит от производителя диодов. Некоторые диоды реагируют более мягко на увеличение dI/dt, другие — более жестко.

Все эти факторы можно не суммировать при одном простом расчете. Поэтому схема на рис.1.19 и соотношения (1.2) или (1.3) применимы только для пояснения влияния какого-либо параметра на режим переключения. Общая оценка режима обратного восстановления может быть произведена только для определенного режима работы диода в схеме. Такая измерительная цепь приведена на рис.1.22.


Рис. 1.22

Скорость коммутации dI/dt регулируется резистором затвора RGon. Паразитная индуктивность L q 1 возникает при подключении конденсаторов, IGBT и диода. На рис.1.23 показаны управляющие сигналы IGBT и ток через IGBT и диод. При выключении IGBT ток нагрузки протекает через обратный диод. Как только IGBT включается в следующий раз, диод переключается с характерным режимом восстановления в тот же момент. При включении через IGBT также проходит обратный ток обратного диода. Этот процесс показан для мягко-восстанавливающегося диода на рис.1.24 с сильным растяжением по временной оси. На рис.1.24а показана кривая тока и напряжения IGBT а также потери мощности при включении. На рис.1.24b — кривая тока и напряжения обратного диода и его потери мощности.


Рис. 1.23

Пока через IGBT проходит импульсный обратный ток IRPM, напряжение на IGBT все еще равно напряжению Vk (1200 В на рис.1.24а). При этом потери мощности включенного состояния максимальны для IGBT.

Характеристику обратного восстановления диода можно разделить на две части:

  1. Возрастание обратного импульса тока и соответственно обратного падения тока со скоростью dIr/dt. dIr/dt находится в пределах dI/dt насколько это позволяет диод. Импульсный обратный ток IRPM воздействует на ключ.
  2. «Хвост», при этом обратный ток медленно снижается до нуля. Здесь нельзя определить trr. Основные потери мощности диода возникают в «хвосте», когда напряжение уже приложено к диоду. Быстрый диод без хвостового тока обеспечит меньшие потери коммутации, но может быть непригодным в работе. В IGBT потери при коммутации в этой фазе не столь высоки, так как в этот момент приложенное напряжение уже уменьшилось.

По сравнению с потерями в IGBT, при работе потери в диоде меньше (потери при коммутации в диоде на рис.1.24а приводятся в том же масштабе, что потери в IGBT на рис.1.24b). Для максимального уменьшения потерь в IGBT и в диоде необходимо учесть малый импульс обратного тока и большую часть сохранившегося заряда, который был разряжен в хвостовой фазе. Предел этого — максимальная рассеиваемая мощность диода.

Читайте также:  Декоративные подушки с кошками своими руками


Рис. 1.24. Ток, напряжение и потери мощности при включении IGBT (а) и выключении диода (b), которые были измерены в схеме на рис.1.22

Импульсный обратный ток восстановления IRPM — наиболее важный параметр диода, влияющий на общие потери, поэтому его необходимо минимизировать.

При стандартном применении, когда ключом служит полупроводниковый модуль, паразитная индуктивность L q ges находится в пределах 40 нГн, уменьшая возникающее перенапряжение. Так как не существует идеального ключа, напряжение на IGBT будет падать до определенного уровня во время фазы восстановления. Это напряжение имеет вид:

где VCE(t) — напряжение, приложенное к IGBT в соответствующий момент. Обычно для диодов с мягким восстановлением при умеренных скоростях роста до 1500 А/мкс и с минимальными паразитными индуктивностями, V(t) меньше чем Vk в любой момент времени, и при этом не будет выбросов напряжения.

На рис.1.25 приведен пример режима восстановления по этому способу. При этих условиях перенапряжения в CAL-диодах сравниваются с диодами, время жизни носителей заряда в которых устанавливается платиновой диффузией, CAL-диоды работают с мягкими условиями восстановления за счет уменьшенной эффективности р- эмиттера. Диоды с платиной становятся такими же «мягкими», как и CAL-диоды при номинальном токе (75 А).

Но меньшие токи вызовут максимальные перенапряжения, более 100 В при 10 % номинального тока из-за быстрых параметров переключения. Но в CAL-диодах не будет значительных перенапряжений при любых условиях.


Рис. 1.25. Выброс напряжения при коммутации в зависимости от прямого тока диода

Все дальнейшие объяснения в этом руководстве основаны на следующем определении: Диод работает в режиме мягкого восстановления, если при любых параметрах в схеме не возникает перенапряжений, вызванных спадом обратного тока диода. Любые параметры — это номинальный диапазон токов, все частоты коммутации схемы при температуре от -50°С до +150°С. Это определение верно, если dI/dt не слишком высоко (> 6 кА/мкс) или в схеме достаточно большая индуктивность (> 50 нГн), что также может вызвать выбросы напряжения.

Не менее важным требованием к обратным диодам на напряжение от 100 В (несмотря на мягкий режим коммутации) является динамическая устойчивость. На рис.1.24b показано, что пока через диод протекает хвост тока, к нему приложено почти все входное постоянное напряжение. Если IGBT переключается очень резко (малое сопротивление затвора RG), будут расти обратный и хвостовой токи, вместе с которыми уменьшается напряжение VCE на IGBT, которое коммутирует диод с большей скоростью dV/dt. Плотность проводящих ток носителей заряда (дыр) поэтому будет выше исходной плотности, вследствие чего произойдет пробой в полупроводнике при напряжении, намного ниже обратного уровня (динамический пробой). Для управления этими процессами существует характеристика динамической устойчивости обратных диодов. Динамическая устойчивость определяется следующим образом:

Динамическая устойчивость — способность диода выдерживать высокие скорости коммутации di/dt и высокие напряжения в одно и тоже время.

Если диод имеет незначительную динамическую устойчивость, ограничивает di/dt IGBT или работает только с максимальным обратным выбросом тока, допускается увеличение потерь на переключение.

Замечено абсолютно верно: коммутационные потери в полумостовых и мостовых схемах в значительной степени зависят от характеристик оппозитных диодов, имеющихся в транзисторах MOSFET. Характеристики этих диодов в части заряда обратного восстановления Qrr, а значит и времени обратного восстановления trr, оставляют желать лучшего — примерно таких параметров, какие имеют диоды HEXFRED. Как было сказано в книге, фирмы-производители электронных компонентов пытаются разными технологическими приемами улучшить характеристики обратного восстановления оппозитных диодов, и им это в какой-то степени удается. Но окончательно исключить эти потери не получается, поэтому здесь мы подробно рассмотрим механизм формирования этих потерь.

Для сравнения в таблицу 1 сведены характеристики обратных диодов некоторых наиболее распространенных на отечественном рынке транзисторов MOSFET, а в таблицу 2 — характеристики диодов HEXFRED.

Таблица 1
Тип MOSFET Is, А Ism, А Usd, В trr, нс Qrr, нКл
IRF740 10,0 40,0 2,0 790 8200
IRFP250 30,0 120,0 2,0 540 6900
IRFP350 16,0 64,0 1,6 570 7100
IRFZ48 64,0 210,0 1,3 140 540
Таблица 2
Тип HEXFRED If, А Ifm, А Ufm, В trr, нс Qrr, нКл
HFA06TB120 8,0 80,0 3,0 80 320
HFA08TB60C 8,0 60,0 2,1 55 138
MUR1020CT 5,0 50,0 1,2 25 88
HFA30PB120 30,0 120,0 3,0 135 675
HFA70NH60 100,0 400,0 1,5 120 900

Обозначения в таблицах:
Is, If — номинальный постоянный прямой ток;
Ism, Ifm, — максимальный неповторяющийся пиковый ток;
Usd, Ufm — падение напряжения в открытом состоянии;
trr — время обратного восстановления;
Qrr — заряд обратного восстановления.

Приведенный в таблице 1 транзистор типа IRF740 достаточно часто используется в современных источниках питания, в том числе в источниках полумостового и мостового типа, так как выпускается давно. Рассчитаем мощность, выделяющуюся на этапе обратного восстановления его оппозитного диода при работе в полумосте. Согласно формуле, приведенной на странице 92, она составляет:

Читайте также:  Антенна для улучшения мобильной связи

Мы пошли на упрощение и не стали учитывать мощность, выделяющуюся при переключении, а также статические потери на сопротивлении транзистора в открытом состоянии. Нетрудно подсчитать, что при питании напряжением 310 В и частоте 20 кГц мощность, выделяющая при обратном восстановлении, составляет 25 Вт при допустимой мощности рассеяния 125 Вт. С повышением частоты мощность обратного восстановления растет, что представляет собой серьезное препятствие для повышения рабочей частоты преобразователей.

Создается впечатление, что потери обратного восстановления не отрегулировать никакими схемотехническими методами, кроме снижения частоты переключения и понижения напряжения, при котором происходит обратное восстановление — в расчетной формуле более нет параметров, которые так или иначе могут этому способствовать. Следовательно, нужно выбирать транзистор с максимально улучшенными показателями заряда обратного восстановления, или проектировать большой радиатор, что, конечно, далеко не всегда доступно.

Если подойти к анализу ситуации немного глубже, то окажется, что заряд обратного восстановления (и, соответственно, время обратного восстановления) — величины непостоянные. Но чтобы понять, почему это так, давайте проанализируем процесс появления этих потерь в полумостовых и мостовых схемах.

Наиболее характерный случай, когда транзисторы работают в так называемом "тяжелом режиме переключения", является коммутация большой индуктивной нагрузки (пример — обмотка электрического двигателя). В этом случае длительность открытого состояния "верхнего" и "нижнего" ключевых элементов полумоста и моста могут быть неравными, и в предельном случае открывающие импульсы одного из элементов вообще исчезают. К примеру, если коммутируется только "верхний" ключ, схема превращается в "чоппер", а роль разрядного диода, поддерживающего индуктивный ток, выполняет оппозитный диод "нижнего" ключа. В чоппере разрядный диод выбирается специально, здесь же свойствами диода управлять нет возможности — какой диод есть, такой есть. Что происходит в этом случае, подробно описано в главе "Подводные камни коммутационных процессов". Именно эти потери учитываются формулами на стр.92 книги.

В случае работы мостов и полумостов в инверторах и преобразователях напряжения ситуация описывается несколько сложнее. Поскольку ток в первичной обмотке трансформатора меняет свое направление, причем управляющие импульсы симметричны, и ситуация "тяжелого переключения" не возникает, поскольку вслед за открыванием обратного диода открывается и транзистор, шунтированный этим диодом. Ток в индуктивности "разворачивается". Конечно, необходимо учитывать этот прямой ток через диод, так как он выделяет на диоде мощность в виде тепла.

Идеально подходят для силовых схем так называемые диоды Шоттки. Отличие диодов Шоттки от других диодов состоит в том, что они производятся по оригинальной технологии, и в их структуре практически отсутствуют неосновные носители заряда, которые как раз и влияют на величину времени обратного восстановления. На сегодняшний день в номенклатуре фирм можно встретить диоды Шоттки, допускающие прямой ток через себя порядка 240 А, например, 249NQ150 производства фирмы «International Rectifier». Другое преимущество диодов Шоттки — более низкое падение напряжения в открытом состоянии, что делает их незаменимыми в низковольтных схемах.

К сожалению, диоды Шоттки имеют существенный недостаток: максимальное обратное напряжение у самых лучших представителей этого класса силовых приборов не превышает величину 150 В. Более того, в подавляющем большинстве случаев вы едва ли встретите диоды Шоттки встроенными в корпуса мощных силовых модулей. Что предпринять в таком случае? К счастью, разработана технология производства специальных ультрабыстрых диодов, называемых гексагональными эпитаксильными диодами со сверхбыстрым временем обратного восстановления. Например, диоды серии Hexfred, производимые фирмой «International Rectifier», имеют величинудопустимого напряжения в закрытом состоянии до 1200 В, а по своим свойствам обратного восстановления могут легко соперничать с диодами Шоттки.

Познакомимся с характеристиками ультрабыстрых диодов поподробнее. На рис. 2.7.25 показана типовая кривая обратного восстановления ультрабыстрого диода. В момент открывания ключевого транзистора VT начинается спадание тока диода, затем ток достигает нулевого значения, меняет знак и далее достигает значение irrm, называемого в технической документации пиковым током обратного восстановления (peak reverse recovery current). Процесс нарастания тока обратного восстановления занимает время /fl, называемое временем роста обратного тока восстановления. После этого ток спадает до

Конечно, в технической документации обычно приводятся данные по суммарному времени обратного восстановления, пиковому току обратного восстановления, и по этим данным теоретически можно рассчитать тепловые потери, возникающие в процессе обратного восстановления диода. Однако на практике пользоваться этими данными для расчета тепловых потерь неудобно, так как величина пикового тока обратного восстановления и время восстановления зависят от величины приложенного обратного напряжения. Производители диодов рекомендуют для определения тепловых потерь обратного восстановления пользоваться величиной заряда обратного восстановления (reverse recovery charge), обозначаемого символом Qrr Величину заряда обратного восстановления можно получить непосредственно из технической документации на конкретный диод или рассчитать по приближенной формуле

Читайте также:  Виды пластиковых канализационных труб

нулевого значения за время tb9 называемое временем спада обратного тока восстановления. Полное время trr обратного восстановления диода (reverse recovery time) определяется по формуле

Тепловые потери обратного диода в полумостовых силовых схемах складываются из статических потерь проводимости и потерь обратного восстановления. Статические потери вычислить несложно: они будут определяться величиной прямого падения напряжения Uf на открытом диоде, средним током проводимости и длительностью протекания тока в открытом состоянии, отнормированному к периоду коммутации.

С потерями обратного восстановления сложнее. Поскольку к диоду прикладывается большое обратное напряжение в то время, когда через него течет прямой ток, диоду нужно рассеивать большую мощность. Функция изменения тока во времени носит сложный характер (рис. 2.7.25), поэтому нам придется вычислять мгновенную мощность на очень коротких промежутках времени, а потом получившиеся результаты просуммировать.

Итак, энергия тепловых потерь определяется суммой произведений тока через диод на напряжение, приложенное к нему, на протяжении времени протекания тока. Поскольку к диоду прикладывается напряжение величиной Um, энергия переключения E^ будет определяться по формуле

Если мы внимательнее присмотримся к формуле (2.7.9), то обнаружим, что интеграл здесь есть заряд обратного восстановления диода, который может быть вычислен по формуле (2.7.8) или взят из справочных данных. С учетом приведенных выражений, можно вычислить мощность потерь обратного восстановления:

i

где / — частота коммутации.

Полные тепловые потери, как обычно, определяются суммой статических и динамических потерь по формуле

В табл. 2.7.2 приведены основные параметры некоторых ультрабыстрых диодов.

Таблица 2.7.2, Параметры некоторых ультрабыстрых диодов фирмы «International Rectifier»

Мировые производители силовой элементной базы выпускают столь большую номенклатуру ультрабыстрых диодов, что рассматривать их в рамках данной книги просто не имеет смысла, а читатели без труда найдут для своих разработок подходящие диоды без дополнительных авторских «наводок». Расскажем лишь о перспективах отечественного производства этих важных для силовой электроники компонентов. К примеру, ОАО «ВЗПП-Сборка» [18] выпускает значительное количество ультрабыстрых диодов, аналоги которых производятся «International Rectifier». Диапазон токов этих диодов ограничивается значениями 20…25 А, поэтому в случае необходимости использования более мощных диодов имеет смысл обратить внимание на продукцию ОАО «Электровыпрямитель» [21]. Эта уже знакомая нам фирма поставляет на рынок диодные быстровосстанавливающиеся модули типа SFRD в полумостовом включении (анод первого дио

да подключен к катоду второго) и в одиночном включении. Полумостовые диодные сборки маркируются как М2ДЧ, а одиночные — как МДЧ. Время обратного восстановления диодов и диодных сборок не превышает 0,2…0,3 мкс при номинальных рабочих токах до 300 А.

Кратко упомянем такие всем известные элементы, как стандартные диодные мосты. Оказывается, при разработке силовых схем статических преобразователей эти элементы играют чрезвычайно важную роль: диодный мост — это одно из важнейших звеньев силовой преобразовательной схемы, и при выходе его из строя неработоспособным становится весь преобразователь. Кроме того, до настоящего времени разработчику приходилось закладывать в свои разработки выпрямительные диоды в одиночном исполнении, соединяя их, например, по трехфазной схеме выпрямления Ларионова. Понятно, что при таком подходе разработчик сильно проигрывает в габаритах этого узла.

Специально для применения в силовой преобразовательной технике разработаны компактные диодные мосты, включающие в себя четыре диода (однофазная схема) и шесть диодов (трехфазная схема). На рис. 2.7.26 показан внешний вид трехфазного диодного моста типа 160MT120KB, выпускаемого фирмой «International Rectifier». Диодный мост выдерживает значение продолжительного номинального тока до 160 А, а также значение пикового пускового тока до 1500 А. Диоды моста рассчитаны на значение обратного напряжения до 1200 В.

Интерес для разработчика силовой преобразовательной техники могут также представлять диодные мосты, производимые ЗАО «Электрум АВ» [22]. Номенклатура их достаточно широка: выпускаются

мосты как для монтажа на печатную плату (в том числе и в трехфазном варианте), так и для объемного монтажа. К примеру, мосты типоразмера M6 (рис. 2.7.27) производятся на номинальные токи 63 А, 100 А, 160 А, 200 А, 250 А с рабочим напряжением до 1200 В (исполнение 12) и до 1600 В (исполнение 16). Диоды выдерживают пятикратную токовую перегрузку.

Источник: Семенов Б. Ю. Силовая электроника: профессиональные решения. — М.: СОЛОН-ПРЕСС, 2011. — 416 c.: ил.

Комментировать
155 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector