No Image

Включения трансформатора под напряжение на холостом ходу

СОДЕРЖАНИЕ
169 просмотров
12 декабря 2019

Рассмотрим переходной процесс, возникающий при включении трансформатора на синусоидальное напряжение постоянной амплитуды и неизменной частоты (Рис.35)

Запишем дифференциальное уравнение баланса напряжений:

, (27.1)

где iµ— ток намагничивания трансформатора.

Уравнение нелинейно, т.к. присутствует L1(iµ).

Будем исходить из того, что максимум тока наступает, когда подведенное напряжение проходит через 0. Для упрощения решения данного уравнения рассмотрим включение трансформатора без потерь (R1=0) на х.х., тогда условие равновесия напряжений, после включения может быть описано следующим дифференциальным уравнением:

(27.2)

т. е. условие равновесия напряжения после включения трансформатора будет:

(27.3)

(27.4)

Проинтегрируем левую и правую части уравнения (27.4) и получим

решение этого дифференциального уравнения:

(27.5) ,

где С – постоянная интегрирования, для определения которой рассмотрим момент коммутации t =0. Тогда

С=- (27.6)

Подставим (27.6) в (27.5) и решим это уравнение относительно потока

(27.7)

(27.8)

Для реального трансформатора с учетом потерь (R1 0)

, (27.9)

где — постоянная времени цепи трансформатора.

Связь между потоком Ф током намагничивания iμвыражается магнитой характеристикой. Зная Ф=f(iμ) – кривую намагничивания магнитопровода трансформатора и закон изменнения Ф(t), графическим путём можно получить зависимость iμ=f(t) в переходном процессе включения трансформатора

Как видно из рис. 3.6 при включении трансформатора на х.х. через первые полпериода (0,01 с) возникает ударный магнитный поток, который может превышать периодическую составляющую потока в 2 и более раз. Для его создания в момент включения трансформатора возникает бросок тока намагничивания, величина которого в некоторых случаях соизмерима с величиной тока КЗ, при КЗ за трансформатором. Т.е. он может превышать номинальный ток трансформатора в 8-10 раз.

В силу своей кратковременности он не вызывает опасных температурных явлений, однако его величина может быть достаточной для срабатывания устройств релейной защиты, которые не отличают этот нормальный режим от режима КЗ и будут отключать трансформатор. Разложив кривую iµ(t) в ряд Фурье, можно увидеть, что 2-я гармоника составляет порядка 60%, в то время как в токе КЗ ее присутствие составляет менее 30%. Данное различие и учитывается при проектировании устройств релейной защиты (в частности это используется для блокировки релейной защиты).

Дата добавления: 2016-01-20 ; просмотров: 1084 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Рассматриваемый процесс включения однофазного трансформатора с разомкнутой первичной обмоткой (рис. 3.12) полностью идентичен процессу включения катушки с ферромагнитным сердечником под синусоидальное напряжение и описывается уравнением [9]:

, (3.33)

где Um − амплитуда синусоидального напряжения; a − фаза напряжения при
t = 0 (угол включения); − потокосцепление первичной обмотки;
n1 − число витков первичной обмотки; Ф – магнитный поток; − мгновенное значение тока холостого хода; r − активное сопротивление первичной обмотки.

Магнитная характеристика трансформатора (характеристика холостого хода) нелинейна, следовательно, и дифференциальное уравнение (3.33) будет нелинейным.

Решить это дифференциальное уравнение можно, например, методом условной линеаризации [9], который заключается в следующем. Пусть второе слагаемое в первой части уравнения (3.33) мало по сравнению с первым. Такое условие соблюдается, например, при включении мощных трансформаторов, так как сопротивление r у них обычно незначительно. Поэтому второе слагаемое имеет второстепенное значение по сравнению с членом и неточность его вычисления существенно не повлияет на определение параметров переходного процесса.

Зависимость является нелинейной, так как L есть функция , но в данном случае можно приближенно принять L = const, и связь между и становится линейной:

Читайте также:  Ceresit cr65 расход на 1м2

. (3.34)

Рис. 3.12 Исследуемая схема включения однофазного трансформатора

Отсюда можно выразить и подставить в уравнение (3.33). Тогда

. (3.35)

Уравнение (3.35) становится линейным и имеет решение

, (3.36)

где − амплитуда потокосцепления; (a – j) – фаза включения потокосцепления; угол . Так как r

а)
б)

Рис. 3.13. Магнитная характеристика:

а) трансформатора; б) кривая и ее составляющие

На рисунке 3.14 показана форма тока, соответствующая зависимости и построенная по кривой намагничивания. Видно, что зависимость сильно отличается от синусоиды, особенно в начальной стадии переходного процесса.

Рис. 3.14. Кривая тока, соответствующая

и построенная по кривой намагничивания

Наибольшее значение тока намагничивания – бросок намагничивающего тока возникает через полупериод (0,01 с). Величина может в десятки раз превосходить амплитуду тока установившегося режима . Следовательно, в нелинейных цепях ударный коэффициент может значительно превосходить максимальное значение в линейных цепях не превышающее значения . Такой всплеск тока может вызвать механические разрушения обмотки, так как электродинамические усилия пропорциональны квадрату тока.

Оценка бросков намагничивающего тока iμy важна и для правильной работы защиты трансформатора, которая не должна срабатывать при его включении. Для этого можно мощный ненагруженный трансформатор включить через дополнительное сопротивление , которое затем необходимо замкнуть накоротко

(рис. 3.12).
4. РАСЧЕТНЫЕ СХЕМЫ ПРИ КОРОТКИХ ЗАМЫКАНИЯХ

4.1. Принципы составления схем замещения

Перед расчетом переходного режима электрической системы на основе ее принципиальной схемы составляется расчетная схема. Она отличается от принципиальной тем, что на ней в однолинейном виде показываются только те элементы, по которым возможно протекание аварийных токов или их составляющих. При наличии в расчетной схеме трансформаторов необходимо имеющиеся в ней магнитносвязанные цепи представить одной эквивалентной электрически связанной цепью. При составления схемы замещения рассчитываются ее параметры в именованных или относительных единицах, приведенные к основной ступени напряжения.

Рассмотрим схему рисунка 4.1.

Рис. 4.1. Схема замещения

Приведенные к основной ступени напряжения параметры генератора можно определить по известным из теории трансформатора формулам:

Коэффициент трансформации – это отношение междуфазных напряжений холостого хода обмоток трансформатора по направлению от основной ступени к той ступени, элементы которой подлежат приведению.

При точном приведении в качестве основной ступени напряжения обычно принимается напряжение в месте КЗ. На рисунке 4.1 этому соответствует напряжение в месте КЗ .

В общем виде в соответствии с рисунком 4.1 приведение величин вида

(4.1)

называется точным приведением

При приближенном приведении к одному классу напряжения коэффициенты трансформации определяются как отношение средних номинальных напряжений. При этом промежуточные напряжения сокращаются. Каждому классу соответствует свое среднее номинальное напряжение.

При приближенном приведении за основную ступень напряжения принимают среднее напряжение в соответствии с таблицей 4.1., т.е.:

Значения средних напряжений

Номинальное напряжение сети, кВ Среднее напряжение, кВ Номинальное напряжение сети, кВ Среднее напряжение, кВ
Генераторное 13,8; 15,75; 16,5; 18; 20; 24; 27,5
10,5
6,3
3,15
0,66 0,69
0,38 0,4
0,22 0,23

Приближенное приведение имеет вид:

(4.2)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10614 — | 7339 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Читайте также:  Запор на распашные ворота своими руками

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Первичное включение силовых трансформаторов в работу, а также запуск трансформаторных подстанций – завершающий этап пуско-наладочных работ. Он выполняется в строгом соответствии с правилами эксплуатации трансформаторных установок и только компаниями, которые имеют лицензию на производство таких работ.

Монтаж и наладка комплекса оборудования перед включением

В процессе осмотра места монтажа и наладки комплекса оборудования перед включением важно оценить степень выполнения правил техники безопасности. Установка не должна представлять угрозу нормальному передвижению обслуживающего персонала (в том числе, и с оснасткой). Если силовой трансформатор установлен на уровне земли, проверяют физико-механические характеристики грунта и его сплошность. Выявленные несоответствия нормативам могут вызвать сдвиг грунта, в результате чего трансформатор или его электрические соединения могут быть повреждены. Если трансформатор установлен на бетонную площадку, то предельное напряжение материала на сдвиг должно составлять от 20 МПа и более. Контролируется также геометрическая форма площадки: она должна иметь скошенные края сверху и снизу, высота которых от каждого конца должна быть не менее 50 мм. Минимальные размеры бетонного основания (бетон – марки не ниже М400) под силовые трансформаторы мощностью 500…2500 кВА составляют: длина – 2400 мм, ширина – 2700 мм, высота – 250 мм.

Если устройство установлено внутри помещения или на крыше здания, необходимо тщательно проанализировать возможное поведение конструкции под нагрузкой и оценить риски нарушения целостности. Особые положения касаются устройств, которые размещаются в сейсмически опасных зонах.

В ходе таких работ постоянно сопоставляется фактическая схема расположения трансформатора с той, которая приведена в инструкции производителя оборудования.

Важно! Все выявленные несоответствия подлежат незамедлительному устранению строительной компанией, ответственной за монтаж устройства.

При каких условиях производится включение трансформатора

Качество пусконаладочных операций улучшится, если придерживаться следующих правил измерения и испытания электрооборудования перед введением его в работу:

  • Устройство должно быть проверено на наличие повреждений перед установкой, включая незакрепленные части, наличие грязи и влаги.
  • Избегать каких-либо дополнительных нагрузок на кабеля, вводы или соединения.
  • Не удалять защитное покрытие вокруг клемм: они предотвращают окисление поверхности. На клеммах не должно быть дополнительных деталей (например, шайб): это вызывает перегрев соединения.

  • Проверить наличие зазора между смежными кабелями, избегать их размещения вблизи кромок и обмоток.
  • Проверить заземление нейтрального провода.
  • Проверить правильность функционирования цепей управления и измерить фактическое сопротивление изоляции. Испытание сопротивления изоляции должно быть проведено до подачи питания.
  • Все обмотки должны быть проверены на целостность.
  • При необходимости параллельной эксплуатации нескольких трансформаторов в группе требуется консультация производителя, поскольку все значения напряжения, тока и угла сдвига фаз должны быть в пределах нормы.
  • Перед подачей питания на любой трехфазный трансформатор сравнивают линейное и заземляющее напряжения, которые должны быть одинаковыми.

Совет: После завершения установки проверяют выходное напряжение устройства.

Условия, при каких производится включение трансформатора, полностью определяют устойчивость его работы и трудоемкость последующего регламентного обслуживания.

Измерения и испытания электрооборудования перед введением в работу

Правилами приёмки силовых трансформаторов предписывается выполнить ряд измерений и испытаний электрооборудования перед введением его в работу. На этапе подготовки определяются с перечнем контролируемых параметров. При стандартных испытаниях устанавливают:

  • Коэффициент соотношения напряжения.
  • Полярность для одно- и трехфазных блоков (поскольку однофазные силовые трансформаторы иногда подключаются параллельно, а иногда – в трехфазной цепи).
  • Фазовое соотношение(только для трехфазных блоков); это важно, когда два или более силовых трансформатора при включении будут работать параллельно.
  • Ток возбуждения, который связан с эффективностью, и устанавливает правильность конструкции активной зоны.
  • Потерю активной нагрузки на холостом ходу, которая также связана с эффективностью и правильной конструкцией активной зоны.
Читайте также:  Декоративный шнур для натяжных потолков цена

  • Сопротивление, необходимое для расчета температуры обмотки
  • Падение напряжения(определяется по результатам теста на короткое замыкание), по которому выясняется номинал выключателя и/или предохранителя, а также схема согласующего реле.
  • Потерю нагрузки, определяющую эффективность работы устройства.
  • Прикладные и наведенные потенциалы, по которым проверяется электрическая прочность цепей.

Как происходит первое включение

Существуют также и вспомогательные тесты, которые помогают установить, как происходит первое включение трансформатора:

  • Проверка на импульс (выполняется в сетях, где возможны резкие скачки напряжения, например, при ударах молний);
  • Звук(важно для жилых и офисных помещений: тест может использоваться также в качестве сравнения с будущими звуковыми испытаниями для выявления каких-либо проблем);
  • Повышение температуры обмоток, которое помогает гарантировать, что проектные пределы не будут превышены;
  • Корона для блоков среднего и высокого напряжения, которая покажет, функционирует ли должным образом система изоляции;
  • Сопротивление изоляции в цепях управления напряжением 1,2 кВ (измеряется мегомметром), которое определяет степень влажности изоляции и часто проводится после поставки оборудования, чтобы служить эталоном для сравнения с будущими показаниями;
  • Коэффициент мощности изоляции, который измеряется во время монтажа установке, а затем каждые несколько лет, чтобы помочь определить интенсивность старения изоляции.

Испытание трансформаторов тока толчком на номинальное напряжение

При особых условиях эксплуатации выполняют испытание трансформаторов тока толчком на номинальное напряжение. Этим тестом проверяется функционирование устройства в экстремальных условиях. Контроль тока и напряжения осуществляется на понижающей обмотке.

Величины значений напряжения (линия-земля и линия-линия) должны быть очень близкими. Если это не так, питание отключают и вызывают представителя фирмы-производителя.

Проверка работы холостого хода

При совпадении номиналов подключают нагрузку и подают питание на устройство: так можно проверить работу холостого хода. При контроле напряжений и токов нагружение должно быть безударным, и увеличиваться ступенчато, пока не будет достигнута полная нагрузка. И напряжения, и токи должны меняться одинаково. Максимальная длительная нагрузка указывается в паспортных данных.

После установки проверяют выходное напряжение трансформатора. Проверка должна производиться в некоторой безопасной точке доступа к нагрузке, но не в самом устройстве.

Проверяем правильность работы устройства

Для протяженных кабельных трасс падение напряжения существенно возрастает. Когда напряжение на стороне нагрузки низкое, то для поднятия этого параметра следует использовать отводные соединения ниже 100% напряжения сети. Если напряжение на стороне нагрузки высокое, то для его снижения необходимо использовать ответвительные соединения, превышающие 100% линейного напряжения.

Что предпринимать если измеренный ток холостого хода превышает значение

Что предпринимать, если измеренный ток холостого хода превышает значение, приведенное в паспорте? Это возможно, если при монтаже перепутаны отводы, используемые для коррекции сверхвысокого или сверхнизкого входного напряжения линии. Следует дополнительно проверить схему подключения и переподключить отводы, согласно схеме, указываемой на табличке или в инструкции по монтажу.

Важно! Никогда не пытайтесь проверить выходное напряжение на трансформаторе. В корпусе всегда присутствует опасное высокое напряжение.

Комментировать
169 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector