No Image

Вольт амперная характеристика некоторого нелинейного электрического элемента

271 просмотров
12 декабря 2019

Те элементы электрической цепи, для которых зависимость тока от напряжения I(U) или напряжения от тока U(I), а также сопротивление R, постоянны, называются линейными элементами электрической цепи. Соответственно и цепь, состоящая из таких элементов, именуется линейной электрической цепью.

Для линейных элементов характерна линейная симметричная вольт-амперная характеристика (ВАХ), выглядящая как прямая линия, проходящая через начало координат под определенным углом к координатным осям. Это свидетельствует о том, что для линейных элементов и для линейных электрических цепей закон Ома строго выполняется.

Кроме того речь может идти не только об элементах, обладающих чисто активными сопротивлениями R, но и о линейных индуктивностях L и емкостях C, где постоянными будут зависимость магнитного потока от тока — Ф(I) и зависимость заряда конденсатора от напряжения между его обкладками — q(U).

Яркий пример линейного элемента — проволочный резистор. Ток через такой резистор в определенном диапазоне рабочих напряжений линейно зависит от величины сопротивления и от приложенного к резистору напряжения.

Если же для элемента электрической цепи зависимость тока от напряжения или напряжения от тока, а также сопротивление R, непостоянны, то есть изменяются в зависимости от тока или от приложенного напряжения, то такие элементы называются нелинейными, и соответственно электрическая цепь, содержащая минимум один нелинейный элемент, окажется нелинейной электрической цепью.

Вольт-амперная характеристика нелинейного элемента уже не является прямой линией на графике, она непрямолинейна и часто несимметрична, как например у полупроводникового диода. Для нелинейных элементов электрической цепи закон Ома не выполняется.

В данном контексте речь может идти не только о лампе накаливания или о полупроводниковом приборе, но и о нелинейных индуктивностях и емкостях, у которых магнитный поток Ф и заряд q нелинейно связаны с током катушки или с напряжением между обкладками конденсатора. Поэтому для них вебер-амперные характеристики и кулон-вольтные характеристики будут нелинейными, они задаются таблицами, графиками или аналитическими функциями.

Пример нелинейного элемента — лампа накаливания. С ростом тока через нить накаливания лампы, ее температура увеличивается и сопротивление возрастает, а значит оно непостоянно, и следовательно данный элемент электрической цепи нелинеен.

Для нелинейных элементов свойственно определенное статическое сопротивление в каждой точке их ВАХ, то есть каждому отношению напряжения к току, в каждой точке на графике, — ставится в соответствие определенное значение сопротивления. Оно может быть посчитано как тангенс угла альфа наклона графика к горизонтальной оси I, как если бы эта точка лежала на линейном графике.

Еще у нелинейных элементов есть так называемое дифференциальное сопротивление, которое выражается как отношение бесконечно малого приращения напряжения — к соответствующему изменению тока. Данное сопротивление можно посчитать как тангенс угла между касательной к ВАХ в данной точке и горизонтальной осью.

Такой подход делает возможным простейший анализ и расчет простых нелинейных цепей.

На рисунке выше показана ВАХ типичного диода. Она располагается в первом и в третьем квадрантах координатной плоскости, это говорит нам о том, что при положительном или отрицательном приложенном к p-n-переходу диода напряжении (в том или ином направлении) будет иметь место прямое либо обратное смещение p-n-перехода диода. С ростом напряжения на диоде в любом из направлений ток сначала слабо увеличивается, а после резко возрастает. По этой причине диод относится к неуправляемым нелинейным двухполюсникам.

На этом рисунке показано семейство типичных ВАХ фотодиода в разных условиях освещенности. Основной режимом работы фотодиода — режим обратного смещения, когда при постоянном световом потоке Ф ток практически неизменен в довольно широком диапазоне рабочих напряжений. В данных условиях модуляция освещающего фотодиод светового потока, приведет к одновременной модуляции тока через фотодиод. Таким образом, фотодиод — это управляемый нелинейный двухполюсник.

Читайте также:  Запах от линолеума таркетт

Это ВАХ тиристора, здесь видна ее явная зависимость от величины тока управляющего электрода. В первом квадранте — рабочий участок тиристора. В третьем квадранте начало ВАХ — малый ток и большое приложенное напряжение (в запертом состоянии сопротивление тиристора очень велико). В первом квадранте ток велик, падение напряжения мало — тиристор в данный момент открыт.

Момент перехода из закрытого — в открытое состояние наступает тогда, когда на управляющий электрод подан определенный ток. Переключение из открытого состояния — в закрытое происходит при снижении тока через тиристор. Таким образом, тиристор — это управляемый нелинейный трехполюсник (как и транзистор, у которого ток коллектора зависит от тока базы).

Выше были изложены основные методы расчета и описаны свойства линейных электрических цепей. В этом разделе рассматриваются нелинейные электрические цепи, т. е. цепи, содержащие элементы с нелинейными вольт-амперными характеристиками.

Нелинейные элементы электрических цепей можно разбить в зависимости от их характеристик на две основные группы: симметричные и несимметричные. Симметричными называют нелинейные элементы, у которых вольт-амперные характеристики не зависят от направлений тока в них и напряжения на их зажимах. К числу таких элементов относятся электрические лампы, бареттеры, терморезисторы (термисторы) и т. п. Несимметричными называют нелинейные элементы, у которых вольт-амперные характеристики не одинаковы при различных направлениях тока и напряжения на зажимах. В качестве примеров таких нелинейных элементов можно назвать электрическую дугу с разнородными электродами (медь — уголь, железо — ртуть), триоды (ламповые и полупроводниковые), вентили и т. п.

Рассмотрим вольт-амперные характеристики некоторых нелинейных элементов. Вольт-амперная характеристика бареттера (применяется для стабилизации тока) интересна тем, что при изменении в некоторых пределах напряжения U на его зажимах ток остается практически неизменным (рис. 20-1). Ток в бареттере практически один и тот же при изменении напряжения в пределах от до . Сопротивление бареттера растет с увеличением тока.

Для стабилизации напряжения в электрических цепях включают терморезисторы, у которых с повышением температуры сопротивление уменьшается. На рис. 20-2 показана типичная вольт-амперная характеристика терморезистора. Они включаются также в различные схемы для измерения и регулирования температуры, применяются для температурной компенсации и т. д.

Некоторые электрические цепи содержат в качестве нелинейных элементов приборы тлеющего разряда. Режим работы

газового промежутка, характеризующийся дуговым разрядом, также встречается весьма часто на практике. С увеличением тока напряжение на дуге падает или, как говорят, у дуги падающая характеристика.

Электронные лампы и транзисторы, очень часто применяемые в современной электротехнике, как было показано, также обладают нелинейными вольт-амперными характеристиками.

Расчеты и исследования электрических цепей с нелинейными вольт-амперными характеристиками во многих случаях проводятся графоаналитическими методами, в основу которых положены законы Кирхгофа. В тех случаях, когда вольт-амперные характеристики можно с достаточной степенью точности выразить аналитическими функциями, может быть выполнен аналитический расчет.

При расчете нелинейных цепей вводят понятия статического и дифференциального сопротивлений нелинейного элемента.

На рис. 20-3 показана вольт-амперная характеристика нелинейного элемента, построенная в масштабах для тока и напряжения Предположим, что рабочий режим элемента задан точкой а. Отношение напряжения, измеряемого отрезком к току, измеряемому отрезком , определяет в некотором масштабе статическое сопротивление в данной точке. Из рис. 20-3 видно, что это сопротивление пропорционально тангенсу угла между прямой, соединяющей точку а с началом координат, и осью токов, т. е.

Предел отношения приращения напряжения на участке цепи к приращению тока в нем или производная от напряжения по в том же масштабе определяет дифференциальное сопротивление . Это сопротивление пропорционально

тангенсу угла а между касательной к вольт-амперной характерис-тике в точке а и осью токов, т. е.

Читайте также:  Бараньи ребрышки на костре

Для прямолинейного участка вольт-амперной характеристики дифференциальное сопротивление равно отношению конечного приращения напряжения к конечному приращению тока, т. е.

Для нелинейных элементов с падающей вольт-амперной характеристикой дифференциальное сопротивление отрицательно, так как положительное приращение тока сопровождается отрицательным приращением напряжения.

Если вольт-амперная характеристика на рабочем участке практически линейна, то можно для расчета нелинейный элемент заменить эквивалентной схемой, состоящей из источника напряжения и линейного сопротивления Так, вольт-амперные характеристики двух нелинейных элементов, представленные на рис. 20-4, а и б, на небольших участках около рабочей точки а можно заменить прямыми линиями, уравнения которых

Предположим, что нелинейный элемент (рис. 20-5, а) имеет вольт-амперную характеристику, показанную на рис. 20-4, а. Для рабочей точки а и вблизи нее напряжение и ток на нелинейном элементе связаны первым из выражений (20-1). Эквивалентная схема этого нелинейного элемента на небольшом участке около рабочей точки показана на рис. 20-5, б, причем э. д. с. Е направлена навстречу току так как именно при таком направлении э. д. с потенциал точки 1 (рис. 20-5, а) выше потенциала точки 2 на

Разделив последнее выражение на получим соотношение которому соответствует эквивалентная схема с источником тока (рис. 20-5, в), где Ток равен в масштабе отрезку (рис. 20-4, а), отсекаемому на оси токов продолжением касательной что легко показать при помощи соотношения между катетами треугольника

Если нелинейный элемент (рис. 20-5, а) имеет вольт-амперную характеристику, показанную на рис. 20-4, б, то при тех же положительных направлениях для тока и напряжения (рис. 20-5, а) на эквивалентных схемах изменяются направления э. д. с. и тока источника тока на обратные, что следует из второго уравнения (20-1) и нетрудно уяснить из построений на рис. 20-4, б.

Если на некотором участке вольт-амперной характеристики нелинейного элемента напряжение убывает при увеличении тока (рис. 20-6), то дифференциальное сопротивление эквивалентной схемы получается отрицательным. Это означает, что в схеме замещения такое сопротивление можно представить источником э. д. с. или тока.

Следует еще раз подчеркнуть, что все соотношения, которые можно установить при помощи эквивалентных схем, справедливы лишь для таких режимов, когда нелинейные элементы электрической цепи работают на практически прямолинейных участках вольт-амперных характеристик.

Нелинейные элементы электрических цепей, их вольт-амперные характеристики и сопротивления.

Нелинейным элементом электрической цепи считается элемент, значения параметров которого зависят от значения тока данного элемента или напряжения на его выводах.

К нелинейным элементам электрических целей относятся разнообразные электронные, полупроводниковые и ионные приборы, устройства, содержащие намагничивающие обмотки с ферромагнитными магнитопроводами (при переменном токе), лампы накаливания, электрическая дуга и др.

Рис. 1.21. Примеры вольт-амперных характеристик:

а — линейного элемента; б — лампы накаливания; в — полупроводнико- вого диода; г — транзистора (при различных токах базы), д — терморезистора, е – стабилитрона

Нелинейные элементы получают в настоящее время все более широкое распространение, так как они дают возможность решать многие технические задачи. Так, с помощью нелинейных элементов можно осуществить преобразование переменного тока в постоянный, усиление электрических сигналов, генерирование электрических сигналов различной формы, стабилизацию тока и напряжения, изменение формы анналов, вычислительные операции и т д. Нелинейные элементы широко используются в радиотехнических устройствах, в устройствах промышленной электроники, автоматики, измерительной и вычислительной техники.

Важнейшей характеристикой нелинейных элементов является вольт-амперная характеристика (в. а. х.), представляющая собой зависимость между током нелинейного элемента и напряжением на его выводах: I(U) или U(I).

Зависимость между током I и напряжением U любого пассивного элемента электрической цепи подчиняется закону Ома, согласно которому I = U/r. Поскольку у линейных элементов с изменением тока или напряжения сопротивление остается постоянным, их в. а. х. не отличаются от прямой (рис. 1.21, а).

Читайте также:  Доводчик дверной устройство и принцип работы

Рис. 1.22 — К расчету электрической цепи с нелинейным элементом графо-аналитическим методом

У нелинейных элементов в. а. х. весьма разнообразны и для некоторых из них даны на рис. 1.21,б — е. Там же приведены условные графические обозначения соответствующих элементов. Общее условное обозначение любого нелинейного резистивного элемента показано на рис. 1.22, а.

Имея в. а. х. нелинейного элемента, можно определить его сопротивления при любых значениях тока или напряжения. Различают два вида сопротивлений нелинейных элементов: статическое и дифференциальное.

Статическое сопротивление дает представление о соотношении конечных значений напряжения и тока нелинейного элемента и определяется в соответствии с законом Ома. Например, для точки А в. а. х. (рис. 1.21,б) статическое сопротивление

,

где mu и mi — масштабы напряжения и тока.

Дифференциальное сопротивление позволяет судить о соотношении приращений напряжения и тока и определяется следующим образом:

,

К нелинейным электрическим цепям применимы основные законы электрических цепей, т. е. закон Ома и законы Кирхгофа. Однако расчет нелинейных цепей значительно труднее, чем линейных, Объясняется это тем, что кроме токов и напряжений, подлежащих обычно определению, неизвестными являются также зависящие от них сопротивления нелинейных элементов.

Для расчета нелинейных электрических цепей применяется с большинстве случаев графоаналитический метод. Однако если в предполагаемом диапазоне изменения тока или напряжения нелинейного элемента его в. а. х. можно заменить прямой линией, то расчет можно производить и аналитическим методом.

Следует отметить, что к той части электрической цепи, которая содержит линейные элементы, применимы все методы расчета и преобразования электрических цепей, рассмотренные ранее.

Аналитический метод расчета нелинейных электрических цепей. Предположим, что имеется некоторый нелинейный элемент, в. а. х. которого приведена на рис. 1.26, а. Если данный элемент должен работать на линейном участке cd в.а.х., то для расчета и анализа можно использовать аналитический метод.

Чтобы выяснить зависимость между напряжением и током участка cd и построить схему замещения нелинейного элемента, работающего на данном участке, продлим его до пересечения в точке а с осью абсцисс и будем считать, что в точке пересечения напряжение U равно некоторой ЭДС Е.

Рис. 1.26. К расчету электрической цепи с нелинейным элементом аналитическим методом

Для рис. 1.26, а справедливо следующее очевидное соотношение:

Ob = Oa + ab = Oa + bx tgβ. (1.44)

Выразив в (1.44) отрезки через соответствующие электротехнические величины и масштабы напряжения и тока, получим

После умножения на масштаб напряжения будем иметь

(1.45)

где rd — дифференциальное сопротивление нелинейного элемента на участке cd его в. а. х.

Полученному уравнению (1.45) согласно второму закону Кирхгофа соответствует схема замещения amb (рис. 1.26,б) нелинейного элемента, работающего на линейном участке cd.

Допустим, что нелинейный элемент получает питание от эквивалентного генератора с параметрами Eэ и r (рис. 1.26,б), заменяющего некоторый активный двухполюсник. Тогда по второму закону Кирхгофа можно написать

(1.46)

Используя (1.45) и (1.46), нетрудно решать многие задачи, связанные с расчетом и анализом нелинейной электрической цепи. Например, по (1.46) можно определить ток Ix , а по (1.45) — напряжение Ux при заданных Eэ, r и rd.

Если графическое определение ЭДС E вызывает затруднение, можно найти ее, воспользовавшись выражением (1.45) и подставив в него известные координаты одной из точек участка cd.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10614 — | 7339 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Комментировать
271 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector