No Image

Выберите характерные свойства нейтронов

39 просмотров
12 декабря 2019

Реакции под действием нейтронов

В начале 1930 г. было установлено, что при бомбардировке aчастицами бериллия (входной канал реакции (4.6.9)) возникает сильно проникающее излучение, которому, если предположить что это γ-излучение, следовало приписать энергию Еγ ≈ 50 МэВ по экспериментально измеренной кинетической энергии протонов отдачи и ослаблению излучения в свинце. Такую большую энергию нельзя было согласовать с энергетическим балансом реакции. Чеддвик (1932 г.) поставил опыты, которые позволили объяснить свойства загадочного излучения, предположив, что оно представляет собой поток нейтральных частиц с массой покоя, примерно равной массе протона (см. ниже). Открытая Чедвиком частица уже имела свое название — нейтрон. Предположение о существовании в составе ядра нейтрона допускалось Резерфордом задолго до опытов Чедвика и еще в 1920 г. в своей бейкеровской лекции им были описаны основные свойства нейтрона. Тогда же им было предложено и его название.

Электрический заряд нейтрона с огромной точностью (

10 ‑20 е) равен нулю. Несмотря на это, нейтрон имеет магнитный момент μ = -1,91 ядерного магнетона Бора, что свидетельствует о его внутренней структуре (см. §1.9 п.8). Из-за отсутствия электрического заряда нейтроны не участвуют в кулоновском взаимодействии ни с атомными электронами, ни с ядрами. А так как размеры ядер

в 10 -4 раз меньше размеров атомов, то столкновения нейтронов с ядрами происходит значительно реже, чем заряженных частиц с атомами, и пути нейтронов между двумя последовательными столкновениями с ядрами составляют в конденсированных средах 1 – 10 см.

Захват же нейтронов ядрами по причинам, изложенным в §4.2, также маловероятен, и столкновения нейтронов с ядрами сопровождаются рассеянием, а не их поглощением. Поэтому потоки нейтронов принадлежат к сильно проникающему излучению.

Спин нейтрона, так же как и протона, оказался равным 1/2.

В отличие от протона, имеющего электрический заряд, масса mn нейтрона, из-за его электрической нейтральности, не может быть измерена с помощью масс-спектрометров.

Первое определение массы mn нейтрона было сделано Чедвиком. Схема опыта такова. Нейтроны, образующиеся в реакции (4.6.9), направлялись в ионизационную камеру, которая поочередно наполнялась водородом и азотом. Измерялась максимальная кинетическая энергия ядер отдачи, которая соответствует лобовому столкновению нейтронов с ядрами водорода или с ядрами азота в рабочем объеме ионизационной камеры. Законы сохранения энергии и импульса для упругого рассеяния при лобовых столкновениях нейтрона с неподвижным в ЛСК ядром отдачи, ведущих к передаче максимальной кинетической энергии, записываются следующим образом:

mnv 2 /2 = mn(v’) 2 /2 + MV 2 /2, mnv = MV — mnv’, (4.9.1)

где mn, v и v’— масса нейтрона и его скорости до и после столкновения; Mи V – масса ядра отдачи и его скорость после столкновения. Отсюда:

2v = V(1 + M/mn). (4.9.2)

Так как в обоих опытах первоначальная скорость v нейтронов до соударения оставалась одной и той же, то

V( 1 H)·(1 + M( 1 H)/mn) = V( 14 N)·(1 + M( 14 N)/mn). (4.9.3)

Учитывая связь скорости ядра отдачи с его кинетической энергией

V =, (4.9.4)

из последних двух уравнений получим, что

(1 + M( 1 H)/mn)/(1 + M( 14 N)/mn) = =. (4.9.5)

Единственной неизвестной величиной в (4.9.5), которую следует определить, является масса нейтрона mn. Этот метод позволил установить лишь то, что масса нейтрона примерно равна массе протона.

Чедвик впервые использовал и другой, более точный метод измерения массы нейтрона, основанный на анализе энергетического баланса ядерных реакций с участием нейтрона. Все последующие работы по определению массы нейтрона основывались именно на этом принципе.

Наиболее высокая точность определения массы нейтрона получена при анализе реакции образования дейтона

n + 1 H → 2 H + γ (4.9.6)

и обратной ей реакции 2 H(γ, n) 1 H фоторасщепления дейтона.

Если протон неподвижен, то закон сохранения энергии для реакции (4.9.6):

, (4.9.7)

а из закона сохранения импульса следует, что

. (4.9.8)

При Тn » 0 (используется тепловые нейтроны) из (4.9.7) и (4.9.8) получим, что

. (4.9.9)

Массы дейтона и протона md и mp известны с большой точностью, а энергия Eg измеряется современными гамма спектрометрическими методами.

Наиболее точное значение массы нейтрона в настоящее время (1988 г.):

В скобках указана погрешность в двух последних цифрах.

Как уже было отмечено, нейтрон является bактивной частицей с периодом полураспада 10,25 мин (τ = 887,6 ± 5 с, 1989 г.). Поэтому в свободном состоянии нейтроны в природе практически отсутствуют, если не считать небольшого количества нейтронов, рождающихся постоянно под действием космических лучей.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9842 — | 7702 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Свойства нейтронов различных энергий. Проходя сквозь вещество, нейтроны вызывают различные ядерные реакции и упруго рассеиваются на ядрах. Интенсивностью этих микроскопических процессов, в конечном счете, определяются все макроскопические свойства прохождения нейтронов через вещество, такие, как замедление, диффузия, поглощение и т. д. Так как нейтрон имеет нулевой электрический заряд, он практически не взаимодействует с электронами атомных оболочек. Поэтому атомные характеристики среды не играют никакой роли в распространении нейтронов в веществе. Это чисто ядерный процесс.
Сечения различных нейтрон-ядерных реакций зависят от энергии нейтронов, сильно и нерегулярно изменяются от ядра к ядру при изменении A или Z. Сечения взаимодействия нейтронов с ядрами в среднем растут по закону "1/v" при уменьшении энергии нейтрона. По этому свойству нейтроны разделяются на две большие группы – медленных и быстрых нейтронов. Граница между этими группами не является строго определённой. Она лежит в области 1000 эВ.
Нейтроны классифицируют по энергии.

Медленные : энергия Резонансные : 1 эВ ÷ 10 кэВ, Промежуточные : 10 кэВ ÷ 1 МэВ, Быстрые : 1 МэВ ÷ 100 МэВ, Релятивистские : > 100 МэВ.

В свою очередь медленные нейтроны принято подразделять на тепловые и холодные .
Тепловые нейтроны находятся в тепловом равновесии с атомами среды. Их средние энергии − сотые доли электронвольта. Часто в качестве характерной энергии теплового нейтрона указывают величину 0.025 эВ, полученную из соотношения

Читайте также:  Magnusson динамометрический ключ отзывы
Етепл = kT, (1)

где k — постоянная Больцмана, для абсолютной температуры, соответствующей энергии тепловых нейтронов, получается значение Т = 300 0 , т.е. комнатная температура. Таким образом, энергия Етепл соответствует наиболее вероятной скорости нейтронов, находящихся в тепловом равновесии со средой при комнатной температуре.
Заметим, что скорость медленных нейтронов весьма относительна. Даже нейтрон с энергией
0.025 эВ имеет скорость 2 км/сек.
Холодными называют нейтроны с энергиями ниже 0.025 эВ:

Ехол резонансными , потому что в этой области для средних и тяжёлых ядер полное нейтронное сечение велико и его зависимость от энергии представляет собой густой частокол резонансов.
Нейтроны с энергиями от 10 кэВ до 1 МэВ называют промежуточными . Часто в промежуточные включают и резонансные нейтроны. В этой области энергий отдельные резонансы сливаются (исключением являются лёгкие ядра) и сечения в среднем падают с ростом энергии.
К быстрым относят нейтроны с энергиями от 1 до 100 МэВ.
Нейтроны с энергиями выше 100 МэВ относят к релятивистским .

В таблице 5 приведены области энергий и порядки величин сечений различных ядерных реакций под действием нейтронов.

Таблица 5.

Упругое рассеяние
(n,n)

Тип реакции Сечение реакции
) );
для быстрых нейтронов – от 0.1 до нескольких барн.
Пороговая реакция.
Сечение по порядку величины несколько барн.
Наиболее важные реакции:

тепл.нейтр = 5400 барн,

тепл.нейтр.=1.75 барн.
Наиболее важные реакции:

тепл.нейтр.=945 барн,

тепл.нейтр.=3840 барн
Пороговая реакция. Порог

10 — 15 МэВ.
Сечение: несколько десятых барн.

В подавляющем большинстве случаев пороговая реакция.
Сечение очень мало, исключая отдельные случаи , и т.д.

При небольших энергиях (0.01100 эВ) для получения монохроматических нейтронов можно использовать их дифракцию на кристалле. Зависимость энергии нейтронов от угла их отражения от поверхности кристалла φ даётся формулой Брэгга-Вульфа

( 3 )

где m − масса нейтрона, d − расстояние между соседними атомными плоскостями в кристалле, n − целое число (порядок спектра).

Так как у нейтронов отсутствует электрический заряд, они взаимодействуют главным образом с ядрами атомов вещества. В отличие от протонов, которые не могут эффективно взаимодействовать с ядром при малых энергиях из-за кулоновского барьера, нейтроны даже при низких энергиях способны подойти к ядру на расстояние порядка радиуса действия ядерных сил.
Явления, происходящие при взаимодействии нейтронов с ядрами, зависят от кинетической энергии нейтронов.
Нейтроны с энергиями десятки кэВ и более передают энергию в основном в результате прямых столкновений с атомными ядрами. Для быстрых нейтронов наиболее важным результатом взаимодействия являются упругие (n,n) и неупругие (n,n′) столкновения с ядрами. Под действием быстрых нейтронов также эффективно идут реакции типа (n,α), (n,p), (n,2n), реакции деления (n,f), и др.
Для нейтронов с энергиями доли эВ ÷ 10 кэВ наблюдаются максимумы в сечении взаимодействия при определённых значениях энергий нейтронов, характерных для данного вещества. Основные процессы — рассеяние и замедление нейтронов до тепловых скоростей.
Энергии тепловых нейтронов (сотые доли эВ) не превышают энергии связи атомов в водородосодержащих молекулах. Поэтому в случае, если не происходит ядерной реакции, тепловые нейтроны могут вызвать лишь возбуждения колебательных степеней свободы, что приводит к разогреву вещества.
Важными процессами для тепловых нейтронов являются также ядерные реакции. Наиболее характерные из них — реакции радиационного захвата (n,γ). При уменьшении энергии нейтронов сечение упругого рассеяния (n,n) остается примерно постоянным на уровне нескольких барн, а сечение (n,γ) растет по закону 1/v, где v — скорость налетающего нейтрона. Поэтому для очень медленных нейтронов возрастает не только абсолютная, но и относительная роль реакций радиационного захвата.

Читайте также:  Елка живая новогодняя фото

Замедление нейтронов. Замедление нейтронов происходит при упругих столкновениях с ядрами, т.к. если до столкновения ядро покоилось, то после столкновения оно приходит в движение, получая от нейтрона некоторую энергию. Поэтому нейтрон замедляется. Однако это замедление нейтронов не может привести к их полной остановке из-за теплового движения ядер. Энергия теплового движения порядка kT. Если нейтрон замедлился до этой энергии, то при столкновении с ядром он может с равной вероятностью как отдать, так и получить энергию. Нейтроны с энергиями kT находятся в тепловом равновесии со средой. Поглощение и диффузия нейтронов происходят как во время замедления, так и после окончания этого процесса.
Практическая важность процесса замедления обусловлена тем, что в большинстве нейтронных источников (реактор, радон-бериллиевая ампула и т. д.) нейтроны рождаются в основном с энергиями от десятков кэВ до нескольких МэВ, в то время, как большинство важных в прикладном отношении нейтронных реакций, согласно закону "1/v", наиболее интенсивно идёт при низких энергиях нейтронов.
Для того чтобы понять основные закономерности процесса замедления нейтронов, рассмотрим сначала среднюю потерю энергии быстрого нейтрона при столкновении с ядром водорода – протоном. Так как массы нейтрона и протона примерно равны, то баланс энергии при столкновении имеет вид

где E, v – начальные энергия и скорость нейтрона, vn, vp – соответственно скорости нейтрона и протона после столкновения. Поскольку в системе центра инерции рассеяние изотропно, то в среднем протон и нейтрон и в лабораторной системе имеют после столкновения одинаковые энергии (благодаря равенству их масс):

где E1 – средняя энергия нейтрона после столкновения. Таким образом, в водороде энергия нейтрона в среднем уменьшается вдвое при каждом столкновении. Если нейтрон сталкивается не с протоном, а с более тяжёлым ядром, то средняя потеря энергии при столкновении уменьшается При рассеянии нейтрона на ядре с массовым числом А средняя потеря энергии определяется соотношением

.

Например, если замедлителем является углерод 12 С, то E1 ≈ (0.8÷0.9)E.
Таким образом, в углероде энергия нейтрона в среднем будет уменьшаться вдвое лишь после трёх столкновений. Замедление идёт тем эффективнее, чем легче ядра замедлителя. Кроме того, от хорошего замедлителя требуется, чтобы он слабо поглощал нейтроны, т.е. имел малое сечение поглощения. Малые величины имеют сечения поглощения нейтронов на дейтерии и кислороде. Поэтому прекрасным замедлителем является тяжёлая вода D2O. Приемлемым, но несколько худшим замедлителем является обычная вода H2O, так как водород поглощает нейтроны заметно интенсивнее, чем дейтерий. Неплохими замедлителями являются также углерод, бериллий, двуокись бериллия.
Важной чертой процесса замедления является то, что потеря энергии на столкновение, согласно (4), (5), пропорциональна самой энергии. Так, при столкновении с атомом водорода нейтрон с энергией 1 МэВ теряет 0.5 МэВ, а нейтрон с энергией в 10 эВ – всего 5 эВ. Поэтому длительность замедления и проходимый при замедлении путь обычно слабо зависят от начальной энергии нейтрона. Некоторым исключением являются водородосодержащие вещества. Сечение нейтрон – протон резко падает при повышении энергии выше 100 кэВ. Поэтому длина замедления в водородосодержащих веществах относительно сильно зависит от энергии нейтрона. Время замедления нейтрона невелико. Даже в таком тяжёлом замедлителе, как свинец, нейтрон замедляется от энергии 1 МэВ до 1 эВ за 4·10 -4 сек.
Важнейшей характеристикой процесса замедления является длина замедления , обозначаемая через 1/2 . Величина носит не соответствующее её размерности название возраста нейтронов . Смысл этой величины состоит в том, что

E1 = (1-a/2), где

где − среднеквадратичное расстояние, на которое нейтрон уходит от источника в процессе замедления в интервале энергий от 1 МэВ до 1 эВ. Длина замедления в хороших замедлителях имеет порядок десятков сантиметров (табл. 6). Начиная с энергий 0.5÷1 эВ при столкновениях нейтронов с ядрами становится существенной тепловая энергия атомов. Распределение нейтронов начинает стремиться к равновесному, т.е. максвелловскому:

= /6

Этот процесс называется термализацией нейтронов.

Диффузия нейтронов. Замедленные до тепловых энергий нейтроны диффундируют, распространяясь в веществе во все стороны от источника. Этот процесс приближённо описывается обычным уравнением диффузии с обязательным учётом поглощения, которое для тепловых нейтронов всегда велико. Основной характеристикой среды, описывающей процесс диффузии, является длина диффузии L, определяемая соотношением

dN/dEe -E/kT E 1/2 , E ≤ 1 эВ.

где − среднеквадратичное расстояние, на которое уходит тепловой нейтрон в веществе от места рождения до поглощения. Длина диффузии имеет примерно тот же порядок, что и длина замедления τ Обе эти величины определяют расстояние от источника, на котором будет заметное количество тепловых нейтронов.
В табл. 6 приведены величины τ и L для наиболее употребительных замедлителей. Из этой таблицы видно, что у обычной воды τ что указывает на сильное поглощение. У тяжёлой воды, наоборот, τ Поэтому она является лучшим замедлителем.

L 2 = /6,
Читайте также:  Высота настенных светильников от пола
Таблица 6.
Замедлители L(см)
H2O (вода) 2.72
D2O (тяжёлая вода) 159
Be (бериллий) 21
C (графит) 58

Величина L зависит не только от собственно диффузии, но и от поглощающих свойств среды. Поэтому L не полностью характеризует процесс диффузии. Дополнительной независимой характеристикой диффузии является среднее время д жизни диффундирующего нейтрона.

Альбедо нейтронов. Интересным свойством нейтронов является их способность отражаться от различных веществ. Это отражение не когерентное, а диффузное. Его механизм таков. Нейтрон, попадая в среду, испытывает беспорядочные столкновения с ядрами и после ряда столкновений может вылететь обратно. Вероятность такого вылета носит название альбедо нейтронов для данной среды. Очевидно, что альбедо тем выше, чем больше сечение рассеяния и чем меньше сечение поглощения нейтронов ядрами среды. Хорошие отражатели отражают до 90% попадающих в них нейтронов, т.е. имеют альбедо до 0.9. в частности, для обычной воды альбедо равно 0.8. Неудивительно поэтому, что отражатели нейтронов широко применяются в ядерных реакторах и других нейтронных установках. Возможность отражения нейтронов объясняется следующим образом. Вошедший в отражатель нейтрон при каждом столкновении с ядром может рассеяться в любую сторону. Если нейтрон у поверхности рассеялся назад, то он вылетает обратно, т.е. отражается. Если же нейтрон рассеялся в другом направлении, то он может рассеяться так, что уйдёт из среды при последующих столкновениях. Этот же процесс приводит к тому, что концентрация нейтронов резко снижается вблизи границы среды, в которой они рождаются, т.к. вероятность для нейтрона уйти наружу велика.

Нейтрон (лат. neuter – ни тот, ни другой) – элементарная частица с нулевым электрическим зарядом и массой немного больше массы протона. Масса нейтрона mn=939,5731(27) Мэв/с 2 =1,008664967 а.е.м. =1,675 10 -27 кг . Электрический заряд =0. Спин =1/2, нейтрон подчиняется статистике Ферми. Внутренняя четность положительна. Изотопический спин Т=1/2. Третья проекция изоспина Т3 = -1/2. Магнитный момент = -1,9130 . Энергия связи в ядре энергия покоя Е = mnc 2 = 939,5 Мэв. Свободный нейтрон распадается с периодом полураспада Т1/2= 11 мин по каналу за счет слабого взаимодействия. В связанном состоянии (в ядре) нейтрон живет вечно. «Исключительное положение нейтрона в ядерной физике, подобно положению электрона в электронике». Благодаря отсутствию электрического заряда нейтрон любой энергии легко проникает в ядро, и вызывает разнообразные ядерные превращения.

Примерная классификация нейтронов по энергиям приведена в табл.1.3

Название Область энергии (эв) Средняя энергия Е(эв) Скорость см/сек Длина волны λ (см) Температура Т(К о )
ультрахолодные — 7 10 — 7 5 10 2 5 10 -6 10 -3
холодные 5 10 -3 ÷10 -7 10 -3 4,37 10 4 9,04 10 -8 11,6
тепловые 5 10 -3 ÷0,5 0,0252 2,198 10 5 1,8 10 -8
резонансные 0,5÷50 1,0 1,38 10 6 2,86 10 -9 1,16 10 4
медленные 50÷500 1,38 10 7 2,86 10 -10 1,16 10 6
промежуточные 500÷10 5 10 4 1,38 10 8 2,86 10 -11 1,16 10 8
быстрые 10 5 ÷10 7 10 6 =1Мэв 1,38 10 9 2,86 10 -12 1,16 10 10
Высокоэнергет. 10 7 ÷10 9 10 8 1,28 10 10 2,79 10 -13 1,16 10 12
релятивистские >10 9 =1 Гэв 10 10 2,9910 10 1,14 10 -14 1,16 10 14

Реакции радиационного захвата(n, γ) нейтрона с последующим испусканием γ –кванта идут на медленных нейтронах с энергией от 0÷500 кэв.

Пример: Мэв.

Упругое рассеяние нейтронов (n, n) широко используется для регистрации быстрых нейтронов методом ядер отдачи в трековых методах и для замедления нейтронов.

При неупругом рассеянии нейтронов (n,n’) происходит захват нейтрона с образованием составного ядра, которое распадается, выбрасывая нейтрон с энергией меньшей, чем имел первоначальный нейтрон. Неупругое рассеяние нейтронов возможно, если энергия нейтрона в раз превышает энергию первого возбужденного состояния ядра мишени. Неупругое рассеяние — пороговый процесс.

Нейтронная реакция с образованием протонов (n,p) происходит под действием быстрых нейтронов с энергиями 0,5÷10 мэв. Наиболее важными являются реакции получения изотопа трития из гелия-3:

Мэв с сечением σтепл = 5400 барн,

и регистрация нейтронов методом фотоэмульсий:

+0,63 Мэв с сечением σтепл = 1,75 барн.

Нейтронные реакции (n,α) с образованием α-частиц эффективно протекают на нейтронах с энергией 0,5÷10 Мэв. Иногда реакции идут на тепловых нейтронах: реакция выработки трития в термоядерных устройствах:

Мэв с сечением σтепл = 945 барн,

реакция косвенной регистрации тепловых нейтронов по α-частицам:

Мэв с сечением σтепл = 3480 барн.

Нейтронные реакции (n,2n) с образованием двух нейтронов возможны, если энергия нейтрона на несколько Мэв превышает порог реакции (n,2n). Например, на быстрых нейтронах с энергией > 10 Мэв возможна реакция:

Мэв.

Нейтронные реакции деления (n,f) ядер тория, урана, плутония будут рассмотрены отдельно.

Дата добавления: 2014-12-18 ; просмотров: 1722 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Комментировать
39 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector