No Image

Выберите величины от которых зависит механическая мощность

645 просмотров
12 декабря 2019

Момщность — физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени

и мгновенную мощность в данный момент времени:

Интеграл от мгновенной мощности за промежуток времени равен полной переданной энергии за это время:

Единицы измерения. В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду. механическая работа мощность электрическая

Другой распространённой, но ныне устаревшей единицей измерения мощности, является лошадиная сила. В своих рекомендациях Международная организация законодательной метрологии (МОЗМ) относит лошадиную силу к числу единиц измерения, "которые должны быть изъяты из обращения как можно скорее там, где они используются в настоящее время, и которые не должны вводиться, если они не используются"

Соотношения между единицами мощности (см. приложение 9).

Мощность в механике. Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:

где F — сила, v — скорость, — угол между вектором скорости и силы.

Частный случай мощности при вращательном движении:

M — момент силы, — угловая скорость, — число пи, n — частота вращения (число оборотов в минуту, об/мин.).

Электрическая мощность. Электримческая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. При изучении сетей переменного тока, помимо мгновенной мощности, соответствующей общефизическому определению, вводятся также понятия активной мощности, равной среднему за период значению мгновенной, реактивной мощности, которая соответствует энергии, циркулирующей без диссипации от источника к потребителю и обратно, и полной мощности, вычисляемой как произведение действующих значений тока и напряжения без учёта сдвига фаз.

Механическая мощность. Мощность характеризует быстроту совершения работы.

Мощность (N) — физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа.

Мощность показывает, какая работа совершается за единицу времени.

В Международной системе (СИ) единица мощности называется Ватт (Вт) в честь английскогоизобретателя Джеймса Ватта (Уатта), построившего первую паровую машину.

  • 1 Вт = 1 Дж / 1с
  • 1 Ватт равен мощности силы, совершающей работу в 1 Дж за 1 секунду или, когда груз массой 100г поднимают на высоту 1м за 1 секунду.

Сам Джеймс Уатт (1736-1819) пользовался другой единицей мощности — лошадиной силой (1 л.с.), которую он ввел с целью возможности сравнения работоспособности паровой машины и лошади.

Однако, мощность одной средней лошади — около 1/2 л.с., хотя лошади бывают разные.

"Живые двигатели" кратковременно могут повышать свою мощность в несколько раз.

Лошадь может доводить свою мощность при беге и прыжках до десятикратной и более величины.

Делая прыжок на высоту в 1м, лошадь весом 500кг развивает мощность равную 5 000 Вт = 6,8 л.с.

Считается, что в среднем мощность человека при спокойной ходьбе равна приблизительно 0,1л.с. т.е 70-90Вт.

При беге, прыжках человек может развивать мощность во много раз большую.

Оказывается, самым мощным источником механической энергии является огнестрельное оружие!

С помощью пушки можно бросить ядро массой 900кг со скоростью 500м/с, развивая за 0,01 секунды около 110 000 000 Дж работы. Эта работа равнозначна работе по подъему 75 т груза на вершину пирамиды Хеопса (высота 150 м).

Мощность выстрела пушки будет составлять 11 000 000 000Вт = 15 000 000 л.с.

Сила напряжения мышц человека приблизительно равна силе тяжести, действующей на него.

эта формула справедлива для равномерного движения с постоянной скоростью и в случае переменного движения для средней скорости.

Из этих формул видно, что при постоянной мощности двигателя скорость движения обратно пропорциональна силе тяги и наоборот.

На этом основан принцип действия коробки скоростей (коробки перемены передач) различных транспортных средств.

Электрическая мощность. Электримческая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. При изучении сетей переменного тока, помимо мгновенной мощности, соответствующей общефизическому определению, вводятся также понятия активной мощности, равной среднему за период значению мгновенной, реактивной мощности, которая соответствует энергии, циркулирующей без диссипации от источника к потребителю и обратно, и полной мощности, вычисляемой как произведение действующих значений тока и напряжения без учёта сдвига фаз.

U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

Читайте также:  Заказчик застройщик в строительстве градостроительный кодекс

Анализируя приведённую формулу, можно сделать очень простой вывод: поскольку электрическая мощность "P" в одинаковой степени зависит от тока "I" и от напряжения "U", то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе (Это используется при передачи электроэнергии на удалённые расстояния от электростанций к местам потребления, путём трансформаторного преобразования на повышающих и понижающих электроподстанциях).

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними:

Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой "Q".

Удельная мощность. Удельная мощность — отношение мощности двигателя к его массе или др. параметру.

Удельная мощность автомобиля. Применительно к автомобилям удельной мощностью называют максимальную мощность мотора, отнесённую ко всей массе автомобиля. Мощность поршневого двигателя, делённая на литраж двигателя, называется литровой мощностью. Например, литровая мощность бензиновых моторов составляет 30…45 кВт/л, а у дизелей без турбонаддува — 10…15 кВт/л.

Увеличение удельной мощности мотора приводит, в конечном счёте, к сокращению расхода топлива, так как не нужно транспортировать тяжёлый мотор. Этого добиваются за счёт лёгких сплавов, совершенствования конструкции и форсирования (увеличения быстроходности и степени сжатия, применения турбонаддува и т. д.). Но эта зависимость соблюдается не всегда. В частности, более тяжёлые дизельные двигатели могут быть более экономичны, так как КПД современного дизеля с турбонаддувом доходит до 50 %

В литературе, используя этот термин, часто приводят обратную величину кг/л.с. или кг/квт.

Удельная мощность танков. Мощность, надёжность и другие параметры танковых двигателей постоянно росли и улучшались. Если на ранних моделях довольствовались фактически автомобильными моторами, то с ростом массы танков в 1920-х-1940-х гг. получили распространение адаптированные авиационные моторы, а позже и специально сконструированные танковые дизельные (многотопливные) двигатели. Для обеспечения приемлемых ходовых качеств танка его удельная мощность (отношение мощности двигателя к боевой массе танка) должна быть не менее 18-20 л. с. /т. Удельная мощность некоторых современных танков (см. приложение 10).

Активная мощность. Активная мощность — среднее за период значение мгновенной мощности переменного тока:

Активная мощность — это величина, которая характеризует процесс преобразования электроэнергии в какой-либо другой вид энергии. Другими словами, электрическая мощность, как бы, показывает скорость потребления электроэнергии. Это та мощность, за которую мы платим деньги, которую считает счетчик.

Активную мощность можно определить по такой формуле:

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления — активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления — активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление — необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) — примеры: лампа накаливания, электронагреватель.

Реактивное сопротивление — попеременно накапливает энергию затем выдаёт её обратно в сеть — примеры: конденсатор, катушка индуктивности.

Активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

Читайте также:  Домашняя лапша рецепт теста пошаговый

Активная мощность: обозначение P, единица измерения: Ватт.

Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный).

Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер).

Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина.

Эти параметры связаны соотношениями:

Также cosФ называется коэффициентом мощности.

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока — активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт).

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например, погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. — при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

Реактивная мощность. Реактивная мощность, способы и виды (средства) компенсации реактивной мощности.

Реактивная мощность — часть полной мощности, затрачиваемая на электромагнитные процессы в нагрузке, имеющей емкостную и индуктивную составляющие. Не выполняет полезной работы, вызывает дополнительный нагрев проводников и требует применения источника энергии повышенной мощности.

Реактивная мощность относится к техническим потерям в электросетях согласно Приказу Минпромэнерго РФ № 267 от 04.10.2005.

При нормальных рабочих условиях все потребители электрической энергии, чей режим сопровождается постоянным возникновением электромагнитных полей (электродвигатели, оборудование сварки, люминесцентные лампы и многое др.) нагружают сеть как активной, так и реактивной составляющими полной потребляемой мощности. Эта реактивная составляющая мощности (далее реактивная мощность) необходима для работы оборудования содержащего значительные индуктивности и в то же время может быть рассмотрена как нежелательная дополнительная нагрузка на сеть.

При значительном потреблении реактивной мощности напряжение в сети понижается. В дефицитных по активной мощности энергосистемах уровень напряжения, как правило, ниже номинального. Недостаточная для выполнения баланса активная мощность передается в такие системы из соседних энергосистем, в которых имеется избыток генерируемой мощности. Обычно энергосистемы дефицитные по активной мощности, дефицитны и по реактивной мощности. Однако недостающую реактивную мощность эффективнее не передавать из соседних энергосистем, а генерировать в компенсирующих устройствах, установленных в данной энергосистеме. В отличие от активной мощности реактивная мощность может генерироваться не только генераторами, но и компенсирующими устройствами — конденсаторами, синхронными компенсаторами или статическими источниками реактивной мощности, которые можно установить на подстанциях электрической сети.

Компенсация реактивной мощности, в настоящее время, является немаловажным фактором, позволяющим решить вопрос энергосбережения и снижения нагрузок на электросеть. По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает значительную величину в себестоимости продукции. Это достаточно веский аргумент, чтобы со всей серьезностью подойти к анализу и аудиту энергопотребления предприятия, выработке методики и поиску средств для компенсации реактивной мощности.

Компенсация реактивной мощности. Средства компенсации реактивной мощности. Индуктивной реактивной нагрузке, создаваемой электрическими потребителями, можно противодействовать с помощью ёмкостной нагрузки, подключая точно рассчитанный конденсатор. Это позволяет снизить реактивную мощность, потребляемую от сети и называется корректировкой коэффициента мощности или компенсацией реактивной мощности.

Преимущества использования конденсаторных установок как средства для компенсации реактивной мощности:

  • · малые удельные потери активной мощности (собственные потери современных низковольтных косинусных конденсаторов не превышают 0,5 Вт на 1000 ВАр);
  • · отсутствие вращающихся частей;
  • · простой монтаж и эксплуатация (не нужно фундамента);
  • · относительно невысокие капиталовложения;
  • · возможность подбора любой необходимой мощности компенсации;
  • · возможность установки и подключения в любой точке электросети;
  • · отсутствие шума во время работы;
  • · небольшие эксплуатационные затраты.

В зависимости от подключения конденсаторной установки возможны следующие виды компенсации:

  • 1. Индивидуальная или постоянная компенсация, при которой индуктивная реактивная мощность компенсируется непосредственно в месте её возникновения, что ведет к разгрузке подводящих проводов (для отдельных, работающих в продолжительном режиме потребителей с постоянной или относительно большой мощностью — асинхронные двигатели, трансформаторы, сварочные аппараты, разрядные лампы и т.д.).
  • 2. Групповая компенсация, в которой аналогично индивидуальной компенсации для нескольких одновременно работающих индуктивных потребителей подключается общий постоянный конденсатор (для находящихся вблизи друг от друга электродвигателей, групп разрядных ламп). Здесь также разгружается подводящая линия, но только до распределения на отдельных потребителей.
  • 3. Централизованная компенсация, при которой определенное число конденсаторов подключается к главному или групповому распределительному шкафу. Такую компенсацию применяют, обычно, в больших электрических системах с переменной нагрузкой. Управление такой конденсаторной установкой выполняет электронный регулятор — контроллер, который постоянно анализирует потребление реактивной мощности от сети. Такие регуляторы включают или отключают конденсаторы, с помощью которых компенсируется мгновенная реактивная мощность общей нагрузки и, таким образом, уменьшается суммарная мощность, потребляемая от сети.
Читайте также:  Гамма колор ростов на дону

Механическая работа (А)

Физическая величина, характеризующая результат действия силы и численно равная скалярному произведению вектора силы и вектора перемещения, совершенного под действием этой силы.

A=Fscosα

A=Fscosα

Работа не совершается, если:

1.Сила действует, а тело не перемещается.

Например: мы действуем с силой на шкаф, но не можем сдвинуть.

2.Тело перемещается, а сила равна нулю или все силы скомпенсированы.

Например: при движении по инерции работа не совершается.

3. Угол между векторами силы и перемещения (мгновенной скорости) равен 90 0 (cosα=0).

Например: центростремительная сила работу не совершает.

Если вектора силы и перемещения сонаправлены (α=0 0 , cos0=1), то A=Fs

Если вектора силы и перемещения направлены противоположно

(α=180 0 , cos180 0 = -1), то A= -Fs (например, работа силы сопротивления, трения).

Если угол между векторами силы и перемещения 0 0 0 , то работа положительна.

Если угол между векторами силы и перемещения 0 0 0 , то работа положительна.

Если на тело действует несколько сил, то полная работа (работа всех сил) равна работе результирующей силы.

Если тело движется не по прямой, то можно разбить все движение на бесконечно малые участки, которые можно считать прямолинейными, и просуммировать работы.

Графическое представление работы.

Рассмотрим движение тела под действием постоянной силы вдоль прямой Ох. График зависимости силы от координаты изображен на рисунке.

Площадь заштрихованного прямоугольника на рисунке численно равна работе силы Fпри перемещении из точки х1 в точку х2.

Если сила меняется с расстоянием (координатой), то необходимо разбить все движение на такие малые участки, на которых силу можно считать неизменной, сосчитать работы на каждом элементарном участке пути, и сложить все элементарные работы. Таким образом: работа численно равна площади фигуры под графиком зависимости силы от координаты F(x).

Единицы работы.

В международной системе единиц (СИ):

[А] = Дж = Н • м

Механическая работа равна одному джоулю, если под действием силы в 1 Н оно перемещается на 1 м в направлении действия этой силы.

1Дж = 1Н • 1м

Мощность

Мощность — физическая величина, характеризующая скорость совершения работы и численно равная отношению работы к интервалу времени, за который эта работа совершена.

Мощность показывает, какая работа совершается за единицу времени.

Единицы мощности

В международной системе единиц (СИ):

Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.

Код ОГЭ 1.16. Механическая работа. Формула для вычисления работы силы. Механическая мощность.

Работа силы – физическая величина, характеризующая результат действия силы.

Механическая работа А постоянной силы равна произведению модуля вектора силы на модуль вектора перемещения и на косинус угла а между вектором силы и вектором перемещения: А = Fs cos а.

Единица измерения работы в СИ – джоуль: [А] = Дж = Н • м.
Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.

Анализ формулы для расчёта работы показывает, что механическая работа не совершается если:

  • сила действует, а тело не перемещается;
  • тело перемещается, а сила равна нулю;
  • угол между векторами силы и перемещения равен 90° (cos a = 0).

Внимание! При движении тела по окружности под действием постоянной силы, направленной к центру окружности, работа равна нулю, так как в любой момент времени вектор силы перпендикулярен вектору мгновенной скорости.

Работа – скалярная величина, она может быть как положительной, так и отрицательной.

    Если угол между векторами силы и перемещения 0° ≤ а

Конспект урока «Механическая работа. Механическая мощность».

Комментировать
645 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector