No Image

Выходные характеристики полевого транзистора

919 просмотров
12 декабря 2019

Полевой транзистор, как и биполярный, является активным четырехполюсником и также имеет три электрода. Следовательно, возможны три схемы включения полевого транзистора: 1) с общим истоком – ОИ; 2) с общим затвором – ОЗ; 3) с общим стоком – ОС. Рассмотрим характеристики чаще применяемой схемы с общим истоком.

Рис. 3. Выходная (стоковая) характеристика полевого транзистора с каналом n-типа

Выходные (стоковые) характеристики.

Выходной (стоковой) характеристикой полевого транзистора называется графически выраженная зависимость Iс=f(Ucи) при Uзи=const (рис.3).

Они показывают, что с увеличением uси ток ic сначала растет довольно быстро, а затем это нарастание замедляется и почти совсем прекращается, т.е. наступает явление, напоминающее насыщение. Это объясняется тем, что при повышении uси ток должен увеличиваться, но т.к. одновременно повышается обратное напряжение на p-n-переходе, то запирающий слой расширяется, канал сужается, т.е. его сопротивление растет, и за счет этого ток ic должен уменьшиться. Таким образом, два взаимно противоположных воздействия имеют место на ток, который в результате остается почти постоянным.

При подаче большого по абсолютному значению отрицательного напряжения на затвор ток ic уменьшается, и характеристика проходит ниже. Повышение напряжения стока в конце концов приводит к электрическому пробою p-n-перехода, и ток стока начинает лавинообразно нарастать, что показано на рис.3 штриховыми линиями. Напряжение пробоя является одним из предельных параметров полевого транзистора.

Работа транзистора обычно происходит на пологих участках характеристик, т.е. в области, которую часто не совсем удачно называют областью насыщения. Напряжение, при котором начинается эта область, иногда называют напряжением насыщения, а запирающее напряжение затвора иначе еще называется напряжением отсечки.

Передаточная (стоко-затворная) характеристика.

Рис. 4. Передаточные характеристики полевого транзистора с управляющим p-n-переходом

Передаточной характеристикой полевого транзистора называется графически выраженная зависимость Ic=f(Uзи) при Uси=const (рис.4). При Uзи=0 ток Ic достигает максимального значения, т.к. в данном случае ширина канала максимальна, а сопротивление минимально. С ростом Uобр при неизменном Uси уменьшается ток Ic.

При Uзи=Uзи отс канал перекрывается, ток Ic становится близким к нулю. Однако при этом в цепи течет незначительный ток неосновных носителей заряда. При тех же значения напряжения Uзи, но разных напряжениях Uси ток Ic меняется мало, что объясняется тем, что напряжения Uси берутся при насыщении тока Ic.

Таким образом, передаточная характеристика определяет эффективность управления током Ic с помощью изменения входного напряжения Uзи. В то время как в режиме насыщения большие изменения напряжения Uси почти не влияют на изменение тока Ic, даже незначительные изменения напряжения Uзи вызывают большое изменение этого же тока Iс. В отличие от биполярных транзисторов входные характеристики Iвх=f(Uвх) при Uвых=const не представляют особого интереса, т.к. входной ток, который является током неосновных носителей заряда, очень мал и при изменении Uзи практически не меняется.

Влияние температуры на работу полевого транзистора.

Рассмотрим влияние температуры на сопротивление канала.

При увеличении температуры уменьшается потенциальный барьер и ширина p-n-перехода, в результате ширина канала увеличивается, сопротивление канала уменьшается. В то же время при возрастании температуры уменьшается подвижность основных носителей в канале, что приводит к увеличению сопротивления канала. Таким образом, оба фактора оказывают противоположное влияние на изменение сопротивления канала и, следовательно, на изменение тока Ic при изменении температуры. На рис.5 показано влияние температуры на передаточные характеристики. Здесь видно, что при Uзи опт ток стока Iс не меняется при изменении температуры.

Рис. 5. Влияние температуры на работу полевого транзистора с управляющим p-n-переходом

При |Uзи|>|Uзи опт| Ic растет с увеличением температуры, что говорит о том, что влияние уменьшения потенциального барьера и расширения канала при этом является преобладающим.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8812 — | 7169 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Одно из преимуществ полевого транзистора – очень малый ток утечки затвора, величина которого не превышает нескольких пикоампер (10 -12 A). Поэтому в схеме усилителя па рис. 26.5 затвор находится практически при нулевом потенциале. Ток полевого транзистора протекает от стока к истоку и обычно отождествляется с током стока I D (который, очевидно, равен току истока I S ).

Рассмотрим схему на рис. 26.5. Полагая I D = 0,2 мА, вычисляем потенциал истока: V S = 0,2 мА · 5 кОм = 1 В. Это величина напряжения обратного смещения управляющего pn-перехода.

Падение напряжения на резисторе R 2 = 0,2 мА · 30 кОм = 6 В.

Потенциал стока V D = 15 – 6 = 9 В.

Линия нагрузки

Линию нагрузки можно начертить точно так же, как для биполярного транзистора. На рис. 26.6 показана линия нагрузки для схемы па же. 26.5.

Читайте также:  Вентилятор soler palau silent 100 chz design

Если I D = 0, то V DS = V DD = 15 В. Это точка Х на линии нагрузки.

Если V DS = 0, то почти все напряжение V DD источника питания па­дает на резисторе R 2 . Следовательно, I D = V DD / R 2 = 15 В / 30 кОм = 0,5 мА. Это точка Y на линии нагрузки. Рабочая точка Q выбирается таким образом, чтобы транзистор работал в области отсечки.

Выбранная рабочая точка Q (точка покоя) на рис. 26.6 определяется величинами: I D = 0,2 мА, V GS = — 1 В, V DS = 9 В.

МОП-транзистор

В полевом транзисторе этого типа роль затвора играет металлический электрод, электрически изолированный от полупроводника тонкой пленкой диэлектрика, в данном случае оксида. Отсюда и название транзистора «МОП» — сокращение от «металл-оксид-полупроводник».

Канал п-типа в МОП-транзисторе формируется за счет притяже­ния электронов из подложки р-типа диэлектрическим слоем затвора (рис . 26.7). Ширину канала можно изменять, подавая на затвор электрический потенциал. Подача положительного (относительно подложки)

Рис. 26.6. Линия нагрузки усилителя на полевом транзисторе (рис. 26.5).

Рис. 26.7. Поперечное сечение МОП-транзистора.

потенциала приводит к расширению канала п-типа и увеличению тока через этот канал, подача отрицательного потенциала вызывает сужение канала и уменьшение тока. Для МОП-транзистора с каналом р-типа си­туация изменяется на обратную.

Существует два типа МОП-транзисторов: транзисторы, работающие в режиме обогащения, и транзисторы, работающие в режиме обедне­ния. Транзистор, работающий в режиме обогащения, находится в состоянии отсечки тока (нормально выключен), когда напряжение смеще­ния V GS = 0.

Рис. 26.8. Выходные характеристики МОП-транзистора с каналом п-типа, ра­ботающего в режиме обогащения, и условное обозначение этого транзистора.

Рис. 26.9. Выходные характеристики МОП-транзистора с каналом n-типа, ра­ботающего в режиме обеднения, и условное обозначение этого транзистора.

Протекание тока начинается только при подаче напряже­ния смещения на затвор. Выходные характеристики п-канального МОП-транзистора с каналом п-типа, работающего в режиме обогащения, и его условное обозначение показаны на рис. 26.8.

МОП-транзистор, работающий в режиме обеднения, проводит ток, ко­гда напряжение смещения на затворе отсутствует (нормально включен). Для МОП-транзистора с каналом n-типа ток стока увеличивается при подаче на затвор положительного напряжения и уменьшается при подаче отрицательного напряжения (рис. 26.9).

Условное обозначение МОП-транзистора с каналом р-типа показано на рис. 26.10. Заметим, что прерывающаяся жирная линия указывает на МОП-транзистор, работающий в режиме обогащения (нормально выключен).

Рис. 26.10. Условное обозначение МОП-транзистора с каналом р-типа.

Рис. 26.11. Усилитель на МОП-транзисторе с каналом р-типа, рабо­тающий в режиме обеднения.

Сплошная линия используется для обозначения МОП-транзистора, работающего в режиме обеднения (нормально включен). Вывод подлож­ки обозначается буквой «Ь», обычно он соединяется с выводом истока. На рис. 26.11 схема типичного усилителя с общим истоком на МОП-транзисторе с каналом р-типа, работающего в режиме обеднения. Ис­пользуется источник питания с отрицательным напряжением. Положи­тельное напряжение смещения между затвором и истоком V GS создается обычным образом с помощью резистора R 3 в цепи истока.

В этом видео рассказывается о типах полевых транзисторов:

Введение

Полевыми транзисторами называют активные полупроводниковые приборы, обычно с тремя выводами, в которых выходным током управляют с помощью электрического поля. (electrono.ru)

Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов — управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов, как мы помним, выходным током управляет входной ток базы.

Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название — униполярные. Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).

Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором.

Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.

Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два.

Полевой транзистор с управляющим p-n-переходом

Итак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противополжных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод — затвор. Естественно, что между затвором и p-областью под ним (каналом) возникает p-n переход. А поскольку n-слой значительно уже канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора.

Читайте также:  Водоэмульсионная краска для потолка на кухне

Можно провести следующую аналогию: p-n переход — это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).

Итак, в рабочем режиме полевого транзистора с управляющим p-n переходом напряжение на затворе должно быть либо нулевым (канал открыт полностью), либо обратным.
Если величина обратного напряжения станет настолько большой, что запирающий слой закроет канал, то транзистор перейдет в режим отсечки.

Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока.

Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.

Условные графические изображения полевых транзисторов приведены на рисунке (а — с каналом p-типа, б — с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.

Статические характеристики полевого транзистора с управляющим p-n-переходом

Выходной (стоковой) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток. На рисунке — график слева.

На графике можно четко выделить три зоны. Первая из них — зона резкого возрастания тока стока. Это так называемая «омическая» область. Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора.

Вторая зона — область насыщения. Она имеет почти линейный вид. Здесь происходит перекрытие канала в области стока, которое увеличивается при дальнейшем росте напряжения исток-сток. Соответственно, растет и сопротивление канала, а стоковый ток меняется очень слабо (закон Ома, однако). Именно этот участок характеристики используют в усилительной технике, поскольку здесь наименьшие нелинейные искажения сигналов и оптимальные значения малосигнальных параметров, существенных для усиления. К таким параметрам относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления. Значения всех этих непонятных словосочетаний будут раскрыты ниже.

Третья зона графика — область пробоя, чье название говорит само за себя.

С правой стороны рисунка показан график еще одной важной зависимости — стоко-затворной характеристики. Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора.

Полевой транзистор с изолированным затвором

Такие транзисторы также часто называют МДП (металл-диэлектрик-полупроводник)- или МОП (металл-оксид-полупроводник)-транзисторами (англ. metall-oxide-semiconductor field effect transistor, MOSFET). У таких устройств затвор отделен от канала тонким слоем диэлектрика. Физической основой их работы является эффект изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.
Устройство транзисторов такого вида следующее. Есть подложка из полупроводника с p-проводимостью, в которой сделаны две сильно легированные области с n-проводимостью (исток и сток). Между ними пролегает узкая приповерхностнаяя перемычка, проводимость которой также n-типа. Над ней на поверхности пластины имеется тонкий слой диэлектрика (чаще всего из диоксида кремния — отсюда, кстати, аббревиатура МОП). А уже на этом слое и расположен затвор — тонкая металлическая пленка. Сам кристалл обычно соединен с истоком, хотя бывает, что его подключают и отдельно.

Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт.

А теперь подадим на затвор отрицательное относительно истока напряжение. Возникшее поперечное электрическое поле «вытолкнет» электроны из канала в подложку. Соответственно, возрастет сопротивление канала и уменьшится текущий через него ток. Такой режим, при котором с возрастанием напряжения на затворе выходной ток падает, называют режимом обеднения.
Если же мы подадим на затвор напряжение, которое будет способствовать возникновению «помогающего» электронам поля «приходить» в канал из подложки, то транзистор будет работать в режиме обогащения. При этом сопротивление канала будет падать, а ток через него расти.

Рассмотренная выше конструкция транзистора с изолированным затвором похожа на конструкцию с управляющим p-n переходом тем, что даже при нулевом токе на затворе при ненулевом напряжении исток-сток между ними существует так называемый начальный ток стока. В обоих случаях это происходит из-за того, что канал для этого тока встроен в конструкцию транзистора. Т.е., строго говоря, только что мы рассматривали такой подтип МДП-транзисторов, как транзисторы с встроенным каналом.

Читайте также:  Дизайнерские обеденные группы для кухни

Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором — транзистор с индуцированным (инверсным) каналом. Из названия уже понятно его отличие от предыдущего — у него канал между сильнолегированными областями стока и истока появляется только при подаче на затвор напряжения определенной полярности.

Итак, мы подаем напряжение только на исток и сток. Ток между ними течь не будет, поскольку один из p-n переходов между ними и подложкой закрыт.
Подадим на затвор (прямое относительно истока) напряжение. Возникшее электрическое поле «потянет» электроны из сильнолегированных областей в подложку в направлении затвора. И по достижении напряжением на затворе определенного значения в приповерхностной зоне произойдет так называемая инверсия типа проводимости. Т.е. концентрация электронов превысит концентрацию дырок, и между стоком и истоком возникнет тонкий канал n-типа. Транзистор начнет проводить ток, тем сильнее, чем выше напряжение на затворе.
Из такой его конструкции понятно, что работать транзистор с индуцированным каналом может только находясь в режиме обогащения. Поэтому они часто встречаются в устройствах переключения.

Условные обозначения транзисторов с изолированным затвором следующие:

Здесь
а − со встроенным каналом n- типа;
б − со встроенным каналом р- типа;
в − с выводом от подложки;
г − с индуцированным каналом n- типа;
д − с индуцированным каналом р- типа;
е − с выводом от подложки.

Статические характеристики МДП-транзисторов

Те же характеристики для транзистора с идуцированным каналом:

Экзотические МДП-структуры

Чтобы не запутывать изложение, хочу просто посоветовать ссылки, по которым о них можно почитать. В первую очередь, это всеми любимая википедия, раздел «МДП-структуры специального назначения». А здесь теория и формулы: учебное пособие по твердотельной электронике, глава 6, подглавы 6.12-6.15. Почитайте, это интересно!

Общие параметры полевых транзисторов

  1. Максимальный ток стока при фиксированном напряжении затвор-исток.
  2. Максимальное напряжение сток-исток, после которого уже наступает пробой.
  3. Внутреннее (выходное) сопротивление. Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток — константа).
  4. Крутизна стоко-затворной характеристики. Чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе.
  5. Входное сопротивление. Оно определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»). А среди самих полевых транзисторов пальма первенства принадлежит устройствам с изолированным затвором.
  6. Коэффициент усиления — отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока.

Схемы включения

Как и биполярный, полевой транзистор можно рассматривать как четырехполюсник, у которого два из четырех контактов совпадают. Таким образом, можно выделить три вида схем включения: с общим истоком, с общим затвором и с общим стоком. По характеристикам они очень похожи на схемы с общим эмиттером, общей базой и общим коллектором для биполярных транзисторов.
Чаще всего применяется схема с общим истоком (а), как дающая большее усиление по току и мощности.
Схема с общим затвором (б) усиления тока почти не дает и имеет маленькое входное сопротивление. Из-за этого такая схема включения имеет ограниченное практическое применение.
Схему с общим стоком (в) также называют истоковым повторителем. Ее коэффициент усиления по напряжению близок к единице, входное сопротивление велико, а выходное мало.

Отличия полевых транзисторов от биполярных. Области применения

Как уже было сказано выше, первое и главное отличие этих двух видов транзисторов в том, что вторые управляются с помощью изменения тока, а первые — напряжения. И из этого следуют прочие преимущества полевых транзисторов по сравнению с биполярными:

  • высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление;
  • высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей);
  • поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных;
  • высокая температурная стабильность;
  • малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»;
  • малое потребление мощности.

Однако, привсем при этом у полевых транзисторов есть и недостаток — они «боятся» статического электричества, поэтому при работе с ними предъявляют особо жесткие требования по защите от этой напасти.

Где применяются полевые транзисторы? Да практически везде. Цифровые и аналоговые интегральные схемы, следящие и логические устройства, энергосберегающие схемы, флеш-память… Да что там, даже кварцевые часы и пульт управления телевизором работают на полевых транзисторах. Они повсюду, %хабраюзер%. Но теперь ты знаешь, как они работают!

Комментировать
919 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector