No Image

Высоковольтный источник питания схема

СОДЕРЖАНИЕ
396 просмотров
12 декабря 2019

Для питания высоковольтного преобразователя подходит источник переменного напряжения 12 В / 800 мА. Переменное напряжение выпрямляется диодным мостом с допустимым током 1 A. Выходное постоянное напряжение преобразователя регулируется в диапазоне 0…1000 В. Схема устройства собрана на повышающем трансформаторе, а также таких активных компонентах, как таймер 555, микросхема КМОП-логики 4001, стабилизатор напряжения 78L05, два транзистора NPN проводимости и пара полевых транзисторов IRF510 в качестве оконечных мощных ключей.

Надписи на схеме

High Voltage Adjust

Регулировка высокого напряжения

Transformer: 117VAC – 6.3VAC CT

Трансформатор 117 / 6.3 В

Выход высокого напряжения

Принцип работы приведенной схемы не отличается от аналогичных по схемному решению преобразователей. Особенностью данной схемы является высокое выходное напряжение и возможность его регулирования.

Если трансформатор, указанный на схеме, отсутствует, можно применить любой подобный с таким же коэффициентом трансформации. В этом случае, необходимо подобрать частоту преобразования для повышения эффективности работы устройства.

Будьте осторожны при работе с высоким напряжением!

Перевод: Андрей Гаврилюк по заказу РадиоЛоцман

ТР1 промышленного образца, 1 обмотка рассчитана на 220В. 2 и 3 рассчитаны на 12В, 2-я (верхняя на схеме) рассчитана на отдачу 8-10 А. ТР2 состоит из высоковольтной обмотки (использована заводская с 800 витками), силовой содержащей 10-12 витков (подбирается экспериментально) и обратной связи состоящей из 28 витков, токовый трансформатор ТР3 состоит из токовой обмотки из одного витка и обмотки связи из 24 витков (для повышения чувствительности необходимо увеличить число витков)


Рис.1 Схема принципиальная электрическая

Технические характеристики:
Напряжение питания: 220 вольт переменного тока 50 Гц.
Напряжение на выходе регулируемое от 1 до 15 кВ*.
Регулировка выходного тока, защита от короткого замыкания.**

Правила эксплуатации:
Выставить регулятор напряжения в минимальное положение, регулятор тока в среднее, подключить киловольтметр, запустить установку подключив питание и включив, выставить необходимое напряжение, подрегулировать ограничение по току.

Читайте также:  Бальзамин уоллера искушение светло пурпурное

Техника безопасности:
Не прикасаться к цепям высокого напряжения не удостоверившись в отсутствии питания и не разрядив цепь.

При подключении/переподключении силовых цепей необходимо отключить устройство, выдернуть шнур питания, разрядить силовую цепь резистором на 3 мОм или больше в течении нескольких минут, после чего разрядить оставшееся коротким замыканием (запрещается разряжать сразу коротким замыканием во избежание порчи силовых цепей).

**В положении «Макс. ток» регулятора тока защита от короткого замыкания отключена.


Рис.2 Печатная плата

Принцип действия высоковольтного блока питания

БП построен на основе распространенной ШИМ микросхеме TL494. Особенностью включения является использование обоих компараторов ошибки, что позволило сделать регулировку по току и по напряжению. Еще одной особенностью является использование микросхемы в однотактном преобразователе, по схеме двухтактного с использованием одного сигнального канала, это позволило избежать открытия силового транзистора на время более чем пол такта и избежать не полного закрытия, позволяя ему более четко срабатывать на сигнал без дополнительного ключа, что значительно снизило температуру транзистора (было установлено практическим методом). Регулировка по току осуществляется по сигналу с датчика тока, регулировка по напряжению по сигналу с дополнительной обмотки трансформатора. Микросхема ШИМ имеет отдельный источник питания не связанный с силовой цепью. Для повышения выходного напряжения применен распространенный умножитель УН8,5/25-1,2. Объединение минуса силовой цепи с минусом высоковольтной цепи позволило избежать порчи микросхемы ШИМ и силового ключа при попадании высокого напряжения на корпус управляющего устройства, а заземления корпуса прибора позволяет полностью исключить эту возможность и обезопасить пользователя.


Рис.3 Макетная сборка устройства

Как видно на фотографии, плата устройства была собрана на макетной плате, устройство в данном случае питалось от АКБ, в последствии устройство было немного изменено, чтобы разместиться в корпусе компьютерного БП и стало питаться от понижающего трансформатора.

Читайте также:  Водянка у бройлеров можно употреблять в пищу

Для самостоятельного изготовления флокатора, пистолета порошковой покраски или электростатической коптильни требуется источник высокого напряжения. И если первые два устройства требуют 75-100 киловольт, то высоковольтный генератор для коптильни работает при 15-20.

В сети есть множество схем высоковольтных генераторов сделанных с использованием строчных трансформаторов от мониторов, телевизоров или автомобильных катушек зажигания. В большинстве своём их схемотехника удручает – как правило это простейшие обратноходовые преобразователи, а значит транзистор в них будет работать в роли кипятильника т.к. для новичка наверняка не имеющего осциллографа рассчитать снаббер практически не реально.

Схемы из прошлого века на тиристорах с питанием от сети 220 вольт опасны и в случае неосторожности могут привести к печальным последствиям. Мы же сделаем резонансный полумост на ТДКС .

Давайте посмотрим схему:

Схема высоковольтного генератора

Список компонентов:

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.lay6[0,03MB]

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Читайте также:  Еврочехлы на сиденье стула

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор

30kV 470pf – 2.2n и выходной токоограничительный резистор.

Комментировать
396 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector