No Image

Заряд акб импульсным током

СОДЕРЖАНИЕ
31 просмотров
12 декабря 2019

прикупил я тут некоторое время назад пару новых аккумов. Пару потому что не в машину, а домой с целью строить домашнее бесперебойное питание. И хотя я живу в Москве, моему дому больше 30 лет, старая 9-этажка и с напряжением серьезная проблема. Очень часто происходят кратковременные пропадания. Которые очень вредны холодильникам, кондиционерам и прочим компрессорным устройствам. Сейчас реже, но раньше очень часто напряжение было завышенным — постоянно было около 260 вольт, лампочки не успевал менять.
Сейчас наоборот, по вечерам часто меньше 200в, хотя вроде уже лето и народ поубирал обогреватели в кладовки. В общем, черт знает что творится.
Был у меня старенький комповый упс, вроде приличной фирмы, APC. Мощность 750ватт и его хватало на все что в комнате кроме компа, освещение, благо все либо на светодиодах, либо энергосберегающие, холодильник тоже тянет, у него только в момент пуска под 600 ватт скачок, а потом не больше 60.
Но проблема с этим APC такая, что он постоянно портит свои встроенные аккумы, которых там пара последовательно увеличенных на 12ач каждый, сменил уже комплекта три и решил попробовать к нему снаружи автомобильные пару, они в разы дешевле самых маленьких упсовых специальных. А емкость выдают больше. Но тут снова проблема. Всплыла причина, по которой упс портил свои батареи — завышенное напряжение поддержки. Полностью заряженные батареи он постоянно лупит больше 13в. Так что родные батарейки тупо сохнут, а внешние автомобильные — кипят. Читал, что как то хакерскими метожами можно умудриться отрегулировать эти параметры, которые программно производитель не дает крутить, но попробовать не успел. В итоге в процессе экспериментов с внешними аккумами этот упс благополучно издох и туда ему и дорога. Взамен был куплен новосибирский a-electronica, у которого все параметры элементарно снаружи кнопочками регулируются. Так что теперь у меня эта веселая пара очень хорошо себя чувствует. В моменты глюков в сети все спокойно переключается на батарейки, спокойно заряжается и потом поддержка стоит на уровне нормальной заряженной батареи — 12,7 — 12,8.
А когда покупал эти батарейки, в магазине принимали старые в зачет стоимости, точнее, принимали по весу старые, а у меня их накопилось таких полудохлых уже довольно много, замучился заряжать, ну я их все туда и свез, так что в итоге мне один из двух новых вышел бесплатно.
А потом слегка пожалел, потому что стали попадаться статьи, о том, что можно было попробовать десульфатировать уставший аккум. ну да благо у меня еще осталась пара не очень свежих, на которых можно поэкспериментировать.
О конкретных замерах увеличения емкости пока говорить рано, ибо наработок пока нет, и говорить не очем

сейчас пока о самом методе.
Готовые десульфататоры (десульфаторы) работаю по принципу цикличного разряда заряда с большой частотой. Аккумулятор просто туда сюда очень понемногу гоняется на заряд разряд и гранулы сульфата понемногу таким образом рассасываются. Весь вопрос в правильном подборе тока и длительности импульса.
А так же есть умные зарядки, которые в последней стадии заряда так же подают импульсами ток, таким образом, либо достигается десульфатация, либо просто для поддержки малым током, чтобы избежать кипения

У моего зарядника такой функции нет, поэтому я решил попробовать из подручных средств соорудить примочку для организации импульсной зарядки, а так же и циклической зарядки-разрядки
для этого просто в параллель к аккумулятору вешается нагрузка, потребляющая ток вдвое меньше тока заряда. В итоге в период заряда поовину тока отберет нагрузка, а половина достанется аккумулятору. А когда цикл заряда будет на моменте отключения, тогда нагрузка будет с таким же током разряжать аккумулятор
Конечно по энергопотреблению это неэффективно, ведь 2/3 энергии у нас будет постоянно уходить на тепло в нагрузке. Правильнее создать схему, которая с определенным током будет включать заряд, одновременно отключая балластную нагрузку. Но в нашем случае ключевой задачей будет простота.
Так, например эту же самую задачу люди исполняли на основе самой обыкновенной релюшки поворотника, Частоту моргания которой можно регулировать, если открыть ее и разобравшись в электронике, изменять параметр какого нибудь резистора. Еще проще с этой целью использовать обычную пятиконтактную релюшку, которая сама себя переключает через конденсатор, подбором которого так же регулируется частота. такие схемы тоже есть в достатке. Мне не нравится, что релюшки громко щелкают. У меня все стоит на балконе дома и ночью сильно мешает спать, да и днем постоянное щелкание сутками прилично раздражает.
Значит надо использовать электронику. Есть схемы десульфататоров для повторения на базе счетчика 555 например, но тут уже любой автомобилист вряд ли сможет с наскоку это реализовать. Электроная схема должна быть такой, чтобы быть не сложнее схемы автомобильного зажигания, с которой мы автолюбители худо бедно как то справляемся. И тут я наткнулся на одно видео, в котором товарищ построил на автомобильных комплектующих простую схему высоковольтного разрядника, на базе катушки зажигания, свечи, коммутатора, а вместо источника импульсов — трамблера он взял компьютерный вентилятор с трехжильным проводом. Третий провод у него как раз датчик холла для индикатора оборотов.
А я тут некоторое время балуюсь с ардуиной. уже несколько игрушек сделал, машинки c управлением на ик пультах, управление домашним освещением с такими же пультами, ну и прочие безделушки.
Самая первая программа, которую осваивает начинающий ардуинщик — blink. Она имеется в наборе примеров и начинают как раз всегда с нее, для этого даже не надо ничего собирать, на борту ардуины уже есть светодиод, которым эта программа и моргает. Он дублирует 13 ногу ардуины.
В моем мозгу сразу скомпоновалась схема, в которой вместо датчика холла будет моргать своим 13 светодиодом ардуина, а вместо ВВ катушки на выходе будет стоять мой старый зарядник и заряжать аккум
коммутатор все это дело трансформирует из слаботочных импульсов в мощные силовые. Его пришлось привинтить на компьютерный кулер, ибо мощности в моем случае на коммутаторе стало выделяться поболе, чем в системе зажигания.
Если в доме уже имеется ардуина, и к ней хотя бы минимальный опыт моделирования
А в гараже откопается старый ненужный коммутатор от жигуля, таким образом, больше ничего не потребуется, чтобы собрать простейший импульсатор для старой обычной зарядки аккумулятора
Если вы не знаете, что такое ардуина, конечно специально ради такой затеи с ней разбираться вряд ли стоит. Хотя может и стоит, с чего то ведь надо начинать — ардуина забавная штука, позволяет с минимальными познаниями радиотехники реализовывать очень сложные на первый взгляд проекты.
очень похоже на лего механикс. Только раз в 100 дешевле
видос:

Читайте также:  Белое зеркало с лампочками


Всем нам уже все уши прожужжали, что литий-ионные аккумуляторы правильнее всего заряжать постоянным током до напряжения 4.2 В. По достижении данного значения считается, что аккумулятор набрал где-то 70-80% своей максимальной емкости. К слову сказать, этот момент наступает достаточно быстро и чем больше был ток заряда, тем быстрее.

Теперь остается зафиксировать на аккумуляторе это напряжение и подержать его так еще какое-то время. За это время аккумулятор должен набрать еще процентов 20 емкости. Ток заряда при этом будет неуклонно снижаться но, что немаловажно, до нуля так никогда и не дойдет. Окончанием заряда можно считать снижение тока до

0.05 от номинальной емкости (той, которая указана на этикетке).

Описанная логика по своей сути очень правильная и в первом приближении не имеет недостатков: быстрый набор основной емкости, четко заданные критерии перехода к фазе снижения тока и момента окончания зарядки. Но так ли это?

На самом деле, для описанной выше логике работы зарядных устройств порог в 4.2 вольта выбран далеко не случайно. Дело в том, что длительное прикладывание повышенного напряжение к li-ion аккумуляторам ведет к деградации их электродов и электродных масс (электролита) и, как следствие, потери емкости. А так как фаза заряда с фиксированным напряжением и падающим током обычно довольно длительная, то желательно ограничить напряжение сверху на уровне 4.2 (или 4.24В). Что и делается на практике.

Однако, более правильным было бы контролировать напряжение на аккумуляторе не тогда, когда через него протекает большой зарядный ток, а во время холостого хода. Дело в том, что в зависимости от величины внутреннего сопротивления батареи и тока, напряжение на аккумуляторе может запросто достигать 4.3 и даже 4.4 Вольта (если, конечно, нет PCB-модуля, который отрубит акб из-за перенапряжения). Таким образом, зарядное устройство перейдет в режим стабилизации напряжения немного раньше, чем хотелось бы, увеличивая тем самым общее время заряда.

Заряд импульсами тока с паузами между ними

Умная зарядка дейстовала бы следующим образом: сначала отключила бы зарядный ток, выждала бы небольшую паузу, измерила бы напряжение холостого хода на аккумуляторе и на основании этого приняла бы решение о своих дальнейших действиях. Чем ближе напряжение приблизилось к 4.15В (это напряжение полностью заряженного аккумулятора), тем более короткий импульс зарядного тока выдает зарядка. Как только напряжение достигнет заданного порога (4.15 вольта), импульсы тока совсем прекратятся.

Вот как это выглядит на графике:

В таком зарядном устройстве можно оставлять аккумулятор на сколь угодно длительное время, и он будет подзаряжаться по мере необходимости.

Мы только что описали еще один (более правильный) способ зарядки литиевых аккумуляторов — импульсный. Но такие зарядки менее распространены, так как для реализации этого алгоритма требуется микропроцессорное управление, что усложняет и удорожает схему.

Схема зарядника

Но не надо грустить! Оказывается, существует схема импульсного зарядного устройства для литий-ионных аккумуляторов БЕЗ МИКРОПРОЦЕССОРА. Вот она:

Как это ни удивительно эта несложная схема в полной мере реализует весь описанный выше алгоритм заряда при полном отсутствии "мозгов". Схема работает следующим образом.

Читайте также:  Закуска из зеленых помидор по грузински

С момент включения схема начинает заряжать аккумулятор постоянным током. Величина тока зависит от напряжения питания и сопротивления резистора RD.

В момент, когда напряжение на элементе при наличие зарядного тока начинает превышать 4,15 Вольта, компаратор (KA393 или KIA70XX) видит это и закрывает транзистор VT1. Далее следует пауза, за время которой напряжение на элементе снижается до своего истинного значения. Т.к. напряжение холостого хода на аккумуляторе ещё не достигло величины 4,15 В, оно вскоре упадет ниже этого значения. Компаратор, увидив это, вновь откроет зарядный ключ.

Процесс будет повторяться снова и снова, с той лишь разницей, что по мере зарядки аккумулятора импульсы зарядного тока будут всё время сокращаться, а длительность паузы между импульсами, наоборот, увеличиваться. То есть будет увеличиваться скважность импульсов.

Ближе к концу зарядки длительность импульса зарядного тока составляет доли процента от длительности паузы между ними, а напряжение на элементе будет практически равно 4,15 Вольта (конкретное значение выставляется потенциометром R1 при настройке схемы).

Теперь о деталях. Разумеется, можно использовать обычный трансформатор без средней точки. Прекрасно можно обойтись и однополупериодным выпрямителем. А еще проще взять в качестве питания какой-нибудь уже готовый 5-вольтовый зарядник от сотового телефона. Чтобы его не спалить возможно придется еще сильнее ограничить ток заряда, увеличив RD, например, до 0.47 Ом.

Транзисторы что-то типа KTA1273. Силовой полевик указан на схеме, но еще лучше взять PHB108NQ03LT (выпаять из старой материнской платы от компа).

Подстроечник 470 Ом. И не самых маленьких размеров, т.к. он все-таки должен рассеивать какую-то мощность. Брать более 470 ом не советую, т.к. это увеличивает гистерезис срабатывания микросхемы KIA (микросхема может просто вырубить зарядку вместо того, чтобы генерировать импульсы, как задумано).

Схемы можно объединять в последовательные цепочки. Это позволяет заряжать батареи из последовательно соединенных аккумуляторов.

Схему можно значительно упростить, выкинув необязательные цепи, а также заменив полевик на обычный биполярный транзистор. Вот, например, парочка вполне рабочих вариантов:

Транзистор можно заменить на наш дубовый КТ837. Питания лучше не делать больше 6 вольт, т.к. чем оно выше, тем сильнее все будет греться. Резистором R1 при сильно разряженном аккумуляторе нужно ограничить ток на уровне 700-800 мА, этого будет вполне достаточно для одного элемента li-ion. При подборе резистора главное не превысить максимальную мощность силового транзистора и способности источника питания.

Если не получилось найти микросхемы KIA70хх, их можно заменить другими детекторами напряжения, например, BD4730. Вот вариант зарядки с этой микросхемой:

Для того, чтобы настроить схему, необходимо отловить момент, когда напряжение на аккумуляторе станет ровно 4.2В и в этот момент выставить на 5-ом выводе микросхемы напряжение 2.99 Вольта (при помощи резистора R6). Если есть регулируемый блок питания, можно выставить на нем ровно 4.2 Вольта и на время настройки подключить его вместо аккумулятора.

Любая из этих схем позволяет заряжать литиевые аккумуляторы любых типоразмеров и емкостей (с учетом коррекции зарядного тока) — от небольших элементов в призматических корпусах до циллиндрических 18650 или гигантских 42120.

прикупил я тут некоторое время назад пару новых аккумов. Пару потому что не в машину, а домой с целью строить домашнее бесперебойное питание. И хотя я живу в Москве, моему дому больше 30 лет, старая 9-этажка и с напряжением серьезная проблема. Очень часто происходят кратковременные пропадания. Которые очень вредны холодильникам, кондиционерам и прочим компрессорным устройствам. Сейчас реже, но раньше очень часто напряжение было завышенным — постоянно было около 260 вольт, лампочки не успевал менять.
Сейчас наоборот, по вечерам часто меньше 200в, хотя вроде уже лето и народ поубирал обогреватели в кладовки. В общем, черт знает что творится.
Был у меня старенький комповый упс, вроде приличной фирмы, APC. Мощность 750ватт и его хватало на все что в комнате кроме компа, освещение, благо все либо на светодиодах, либо энергосберегающие, холодильник тоже тянет, у него только в момент пуска под 600 ватт скачок, а потом не больше 60.
Но проблема с этим APC такая, что он постоянно портит свои встроенные аккумы, которых там пара последовательно увеличенных на 12ач каждый, сменил уже комплекта три и решил попробовать к нему снаружи автомобильные пару, они в разы дешевле самых маленьких упсовых специальных. А емкость выдают больше. Но тут снова проблема. Всплыла причина, по которой упс портил свои батареи — завышенное напряжение поддержки. Полностью заряженные батареи он постоянно лупит больше 13в. Так что родные батарейки тупо сохнут, а внешние автомобильные — кипят. Читал, что как то хакерскими метожами можно умудриться отрегулировать эти параметры, которые программно производитель не дает крутить, но попробовать не успел. В итоге в процессе экспериментов с внешними аккумами этот упс благополучно издох и туда ему и дорога. Взамен был куплен новосибирский a-electronica, у которого все параметры элементарно снаружи кнопочками регулируются. Так что теперь у меня эта веселая пара очень хорошо себя чувствует. В моменты глюков в сети все спокойно переключается на батарейки, спокойно заряжается и потом поддержка стоит на уровне нормальной заряженной батареи — 12,7 — 12,8.
А когда покупал эти батарейки, в магазине принимали старые в зачет стоимости, точнее, принимали по весу старые, а у меня их накопилось таких полудохлых уже довольно много, замучился заряжать, ну я их все туда и свез, так что в итоге мне один из двух новых вышел бесплатно.
А потом слегка пожалел, потому что стали попадаться статьи, о том, что можно было попробовать десульфатировать уставший аккум. ну да благо у меня еще осталась пара не очень свежих, на которых можно поэкспериментировать.
О конкретных замерах увеличения емкости пока говорить рано, ибо наработок пока нет, и говорить не очем

Читайте также:  Диск с алмазным напылением для болгарки

сейчас пока о самом методе.
Готовые десульфататоры (десульфаторы) работаю по принципу цикличного разряда заряда с большой частотой. Аккумулятор просто туда сюда очень понемногу гоняется на заряд разряд и гранулы сульфата понемногу таким образом рассасываются. Весь вопрос в правильном подборе тока и длительности импульса.
А так же есть умные зарядки, которые в последней стадии заряда так же подают импульсами ток, таким образом, либо достигается десульфатация, либо просто для поддержки малым током, чтобы избежать кипения

У моего зарядника такой функции нет, поэтому я решил попробовать из подручных средств соорудить примочку для организации импульсной зарядки, а так же и циклической зарядки-разрядки
для этого просто в параллель к аккумулятору вешается нагрузка, потребляющая ток вдвое меньше тока заряда. В итоге в период заряда поовину тока отберет нагрузка, а половина достанется аккумулятору. А когда цикл заряда будет на моменте отключения, тогда нагрузка будет с таким же током разряжать аккумулятор
Конечно по энергопотреблению это неэффективно, ведь 2/3 энергии у нас будет постоянно уходить на тепло в нагрузке. Правильнее создать схему, которая с определенным током будет включать заряд, одновременно отключая балластную нагрузку. Но в нашем случае ключевой задачей будет простота.
Так, например эту же самую задачу люди исполняли на основе самой обыкновенной релюшки поворотника, Частоту моргания которой можно регулировать, если открыть ее и разобравшись в электронике, изменять параметр какого нибудь резистора. Еще проще с этой целью использовать обычную пятиконтактную релюшку, которая сама себя переключает через конденсатор, подбором которого так же регулируется частота. такие схемы тоже есть в достатке. Мне не нравится, что релюшки громко щелкают. У меня все стоит на балконе дома и ночью сильно мешает спать, да и днем постоянное щелкание сутками прилично раздражает.
Значит надо использовать электронику. Есть схемы десульфататоров для повторения на базе счетчика 555 например, но тут уже любой автомобилист вряд ли сможет с наскоку это реализовать. Электроная схема должна быть такой, чтобы быть не сложнее схемы автомобильного зажигания, с которой мы автолюбители худо бедно как то справляемся. И тут я наткнулся на одно видео, в котором товарищ построил на автомобильных комплектующих простую схему высоковольтного разрядника, на базе катушки зажигания, свечи, коммутатора, а вместо источника импульсов — трамблера он взял компьютерный вентилятор с трехжильным проводом. Третий провод у него как раз датчик холла для индикатора оборотов.
А я тут некоторое время балуюсь с ардуиной. уже несколько игрушек сделал, машинки c управлением на ик пультах, управление домашним освещением с такими же пультами, ну и прочие безделушки.
Самая первая программа, которую осваивает начинающий ардуинщик — blink. Она имеется в наборе примеров и начинают как раз всегда с нее, для этого даже не надо ничего собирать, на борту ардуины уже есть светодиод, которым эта программа и моргает. Он дублирует 13 ногу ардуины.
В моем мозгу сразу скомпоновалась схема, в которой вместо датчика холла будет моргать своим 13 светодиодом ардуина, а вместо ВВ катушки на выходе будет стоять мой старый зарядник и заряжать аккум
коммутатор все это дело трансформирует из слаботочных импульсов в мощные силовые. Его пришлось привинтить на компьютерный кулер, ибо мощности в моем случае на коммутаторе стало выделяться поболе, чем в системе зажигания.
Если в доме уже имеется ардуина, и к ней хотя бы минимальный опыт моделирования
А в гараже откопается старый ненужный коммутатор от жигуля, таким образом, больше ничего не потребуется, чтобы собрать простейший импульсатор для старой обычной зарядки аккумулятора
Если вы не знаете, что такое ардуина, конечно специально ради такой затеи с ней разбираться вряд ли стоит. Хотя может и стоит, с чего то ведь надо начинать — ардуина забавная штука, позволяет с минимальными познаниями радиотехники реализовывать очень сложные на первый взгляд проекты.
очень похоже на лего механикс. Только раз в 100 дешевле
видос:


Комментировать
31 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector