No Image

Зарядно восстановительное устройство для автомобильных аккумуляторов

СОДЕРЖАНИЕ
256 просмотров
12 декабря 2019

Устройство зарядно-восстановительное УЗВ1 предназначено для заряда и восстановления работоспособности кислотных свинцовых 12-вольтовых батарей, частично или полностью утраченной в результате сульфатации и окисления электродов, а также их тренировки проведением циклов заряд-разряд с целью увеличения ресурса, срока службы и сохраняемости.

Устройство допускается использовать как источник переменого тока напряжением 36 В частотой 50 Гц.

Перед началом эксплуатации устройства необходимо внимательно изучитъ настоящий паспорт, а также правила по уходу и эксплуатации аккумуляторных батарей.

Технические характеристики

  • Ток заряда «НОРМА», не более:
  • средний 3,0 А;
  • импульсный положительный 8,2 А;
  • импульсный отрицательный 0,3 А;
  • длительность импульсов 20 мс.
  • Ток разряда, не более минус 8,0 А;
  • Допустимый ток нагрузки на выводах 36 В 50 Гц, не более 2,5 А;
  • Напряжение питания частотой 50 Гц 220 В при токе не более 1,0 А; или 36 В при токе не более 3,0 А.

Устройство нормально работает:

  • в диапазоне температур от — 10 до + 40 °С;
  • при относительной влажности воздуха от 60 до 98 %;
  • при атмосферном давлении от 86 до 106 кПа.

На лицевой панели расположены:

  1. тумблер включения сети;
  2. индикатор включения сети;
  3. индикатор заряда;
  4. индикатор разряда;
  5. ручка для переноса;
  6. шнур подачи сетевого напряжения с вилкой;
  7. зажимы для подключения аккумулятора;
  8. тумблер изменения тока заряда;
  9. клемма заземления;
  10. вставка плавкая 1 А;
  11. перемычка;
  12. розетка подключения нагрузки 36 В;
  13. вставка плавкая 3 А:
  14. шильдик.

Особенностью и существенным отличием устройства УЗВ1 от других предлагаемых зарядных устройств является возможность:

  • зарядки;
  • восстановления;
  • тренировки кислотных свинцовых 12-вольтовых батарей.

Методика восстановления аккумуляторов защищена авторским свидетельством № 1677750.

Рис. 1. Внешний вид устройства зарядного-восстановительного "УЗВ1".

Устройство и принцип работы

Принципиальная электрическая схема устройства приведена на рис. 2.

Работа устройства основана на формировании зарядного тока в виде асимметричных импульсов равной длительности с расчетным отношением амплитуд зарядного (прямого) и разрядного (обратного) тока. Это осуществляется с помощью трансформатора и цепей: VD1, R2 — R7 — для амплитуды зарядного (прямого) тока при положительном полупериоде напряжения на выводах обмотки трансформатора, и R1 -R7 — для амплитуды разрядного (обратного) тока при отрицательном полупериоде напряжения на выводах трансформатора.

Индикация режимов работы устройства осуществляется с помощью индикаторов VD5 — VD7. Индикатор VD7 показывает подключение устройства к сети переменного тока. Индикаторы VD5 заряда и VD6 разряда показывают проведение заряда или разряда аккумуляторной батареи.

Работают они в режиме изменяющейся интенсивности свечения в зависимости от величины зарядного или разрядного тока. В конце заряда или разряда возможно отключение индикаторов или их работа в «тлеющем режиме».

Устройство может работать при питании напряжением 220 В или 36 В переменного тока частотой 50 Гц. При этом тумблер S1 должен быть установлен в положение «220 В» или «36 В» соответственно. В конструкции УЗВ1 введена защитная планка, предотвращающая случайное переключение режимов работы «36 В» и «220 В».

Перед подключением аккумуляторной батареи на подзарядку проверьте уровень электролита и его плотность в соответствии с инструкцией по эксплуатации батареи.

Подключение устройства к сети осуществляется с помощью шнура армированного с вилкой Х2.

Аккумуляторная батарея подсоединяется к устройству с помощью зажимов Х3 и Х4 с проводами. При работе от сети 220 В предусмотрена возможность ступенчатого изменения зарядного тока с помощью тумблера SA2.

В устройстве предусмотрена возможность проведения разряда аккумуляторной батареи на резисторы R2 — R7. Для этого при отключенном от сети устройстве необходимо установить перемычку Х5. Это позволяет произвести качественную оценку работоспособности аккумуляторной батареи, а также её тренировку после восстановления путем проведения циклов заряд-разряд.

При проведении заряда перемычка Х5 «РАЗРЯД» должна быть отключена.

Режим заряда «НОРМА» рекомендуется применять в летнее время, режим «БОЛЬШЕ» — при отрицательных температурах наружного воздуха или при повышенной сульфатации и окислении электродов.

Указания по мерам безопасности

Категорически запрещается подключать устройство к электросети, не убедившись, что тумблер SA1 находится в положении, соответствующем напряжению электросети (220 или 36 В).

Подключение устройства к электросети переменного тока осуществляется с помощью шнура питания, входящего в комплект поставки.

Перед заменой вставки плавкой необходимо отключить вилку шнура питания от электросети. Запрещается использовать самодельные вставки плавкие.

Подключение к устройству аккумуляторной батареи и нагрузок переменного тока осуществляйте при отключенной от электросети вилке шнура питания.

При работе устройства клемма «_|_» должна быть заземлена.

Рис. 2. Принципиальная схема устройства зарядно-восстановительного УЗВ1.

Указания по эксплуатации

Заряд и проверку плотности электролита аккумуляторной батареи производите в соответствии с указаниями на заряд в техническом описании конкретного типа батареи и согласно правилам по уходу и эксплуатации аккумуляторных батарей. При этом следует помнить, что устройство работает в режиме источника с постоянным напряжением.

Зарядный ток по мере зарядки аккумуляторной батареи уменьшается. Рекомендуемое время заряда при разряженной аккумуляторной батарее 12 ± 1 час, при подзарядке 2 — 3 часа. Окончание заряда батареи может быть практически определено по признакам:

  • напряжение на батарее достигает 13,5-14,5 В;
  • происходит газовыделение.
Читайте также:  Вязаный коврик крючком из старых вещей схема

Выход из строя (перегорание) вставки плавкой F1 в режиме заряда характеризует наличие короткого замыкания в аккумуляторной батарее. Дальнейшему заряду, до проведения соответствующих ремонтных работ, аккумуляторная батарея нс подлежит.

Заряд аккумуляторной батареи производите при отключённых перемычке Х5 «РАЗРЯД» и нагрузке переменного тока.

Разряд аккумуляторной батареи производите при отключенной электросети переменного тока и подключенной перемычке «РАЗРЯД». Сопротивление нагрузки при разряде в устройстве равно 1,7 Ом. В процессе разряда необходимо контролировать напряжение на клеммах аккумуляторной батареи. Разряд следует прекратить при снижении напряжения аккумуляторной батареи до 10,5 В.

Циклы заряд-разряд проводите для проверки и восстановления работоспособности батареи, а также её тренировки с целью увеличения ресурса, срока службы и сохраняемости. Цикл состоит из полного заряда и разряда батареи. Количество циклов зависит от состояния аккумуляторной батареи и может быть от 1 до 3.

Подключение нагрузки к источнику переменного тока с напряжением 36 В частотой 50 Гц (розетка X1) производите при отключенных аккумуляторной батарее и перемычке «РАЗРЯД».

Табл. 1. Перечень элементов к принципиальной схеме прибора УЗВ1.

Позиционное обозначение Наименование элемента и тип Кол-во Примечания
R1 Резисторы С5-35В-10 — 220 Ом + 10 % 1
R2 — R7 С5-35В-25 — 10 Ом ± 10 % 6
R8 С2-ЗЗН-0.25 — 7,5 кОм + 10 % 1
R9 С2-ЗЗН-0Д5 — 15 кОм± 10 % 1
R10 С2-ЗЗН-0,25 — 3,9 кОм ± 10 % 1
R11 — R13 С2-ЗЗН-0,25 — 2,0 кОм + 10 % 3
VD1 Диоды КД2997А (КД213А) 1
VD2-VD4 КД105Б 3
VD5, VD6 Индикаторы АЛ307БМ 2
VD7 АЛ307ГМ 1
SA1, SA2 Тумблеры ТЗ ВР0.360.007 ТУ 2
F1, F2 Предохранители ВП1-1 3 А 250 В 2
F3 ВП1-1 1 А 250 В 1

Табл. 2. Данные трансформатора прибора УЗВ1.

№ обмотки № выводов Количество витков Диаметр провода, мм Напряжение, В
I 1-3 960 0,5 220
Г 4 98 0,5
II 5-6 160 1.12 36
III 7-8 125 1,60 27,5

Источник: Ходасевич А. Г, Ходасевич Т. И., Зарядные и пуско-зарядные устройства, Выпуск 2.

Всем привет, в этой статье поговорим о том, как собрать устройство для зарядки автомобильного аккумулятора реверсивным, ассиметричным током на полевых транзисторах.

Что такое зарядка АКБ реверсивным током, подробно останавливаться не буду, так как этой информации полно в инете. Для данного устройства было перепробовано много различных схем, большинство из них или не работало вообще, или работа остальных, тем или иным способом не устраивала по параметрам.

Поэтому пришлось начинать с нуля и сделать надёжную, работающую схему, что в конце концов и получилось. Вот так выглядит схема для зарядки аккумуляторов реверсивным током.Данная схема очень элементарна, очень надёжна и очень проста в повторении. Что мы видим на этой схеме, два 555-ых таймера включенных здесь в качестве генераторов импульсов. Каждая микросхема управляет своим полевым ключом.

Соответственно один мосфет отвечает за зарядку аккумулятора, второй мосфет за разрядку. Сначала давайте рассмотрим узел, который отвечает у нас за разрядку аккумулятора.555-ый таймер (№2) здесь настроен на частоту около 1Кгц с коэффициентом заполнения около 85%. Питание данной схемы осуществляется непосредственно от самого аккумулятора, именно поэтому в данной схеме очень важно использовать полевые транзисторы. Потому что в них присутствует, так называемый обратный диод, благодаря этому диоду и возможна работа данной схемы.

Вторая микросхема (№1) отвечает за зарядку аккумулятора, соответственно от того, как вы подберёте частота-задающую обвязку данной микросхемы и будет, в конечном итоге, зависеть время заряда и время разряда вашего аккумулятора.

Значит как же эта схема работает в целом…

Как только на выход нашего устройства мы подключаем какой-либо АКБ, соответственно у нас запускается микросхема №2 и начинает на своём выходе генерировать прямоугольные импульсы, в следствии чего у нас открывается транзистор VT2, который в свою очередь разряжает наш аккумулятор на какую-либо нагрузку, в моём случаи это автомобильная лампа на 21 ватт.

Микросхема под №1 у нас не запускается, так как на выходе нашего устройства стоит диод VD1 (сдвоенный диод-шоттки). На вход нашего устройства мы подключаем какой-либо источник питания, будь то зарядное устройство или какой-нибудь блок питания, соответственно у нас запускается микросхема под №1 и начинает также на своём выходе вырабатывать прямоугольные импульсы с той частотой с которой вы ей задали с помощью частота-задающей обвязки.И как только на выходе №1 микросхемы появляется высокий уровень у нас открываются транзисторы VT1 и VT3. Ну и как видно из схемы транзистор VT1 у нас закорачивает 5 вывод микросхемы №2 на землю, тем самым останавливая генерацию прямоугольных импульсов и запирая транзистор VT2, тем самым прекращая разрядку нашего аккумулятора.

И в то же время открытый транзистор VT3 соединяет наш аккумулятор с нашим источником питания, тем самым обеспечивая его зарядку.

Читайте также:  Водонагреватель проточный электрический какой лучше отзывы

Ну и соответственно, как только с выхода микросхемы №1 высокий уровень исчезает два транзистора VT1 и VT3 закрываются, тем самым разъединяя наше зарядное устройство от нашего аккумулятора и в то же время рассоединяя 5 вывод микросхемы №2 с землёй, тем самым восстанавливая генерацию прямоугольных импульсов на выходе.

По деталям…

Обе микросхемы питаются через 12-ти вольтовые стабилизаторы 7812.

Время заряда и время разряда АКБ можно регулировать изменяя номиналы резисторов R2,R3,R4 и частота-задающего конденсатора С3.

Плата получилась довольно компактная, мосфеты и диод установил на небольшой радиатор.

Хотя они работают в ключевом режиме и нагрев минимальный.

Клемники поставил для подключения разрядной лампы и аккумулятора.Вот подключил, загорелась лампочка, то есть пошла разрядка аккумулятора.Цикл разряда и цикл зарядаПоворачивая бегунок подстроечного резистора можно менять скорость заряда и разряда данной схемы.Данную платку можно разместить непосредственно в корпусе зарядного устройства, тем самым добавив ему очень полезную функцию десульфатации.

Печатку в формате .lay можно скачать здесь.

Для восстановления и тренировки аккумуляторных батарей лучше всего задавать импульсный ток заряда на уровне 5 А. При этом разрядный ток составит около 0,5 А. Он в первую очередь определен номиналом сопротивления резистора R4. Схема построена так, что заряд АКБ происходит токовыми импульсами в течение одной половины периода сетевого напряжения, в тот момент, когда напряжение на выходе устройства превысит уровень потенциала на аккумуляторе. В течение другого полупериода диоды VD1, VD2 заперты и батарея разряжается через сопротивление нагрузки R4.

Значение тока заряда настраивается переменным резистором R2 по аналоговому амперметру. Учитывая, что во время заряда часть тока идет и через сопротивление R4 (10%), то показания амперметра должны быть 1,8 А (для импульсного зарядного тока в районе 5 А), так как аналоговый амперметр показывает среднее значение тока за период времени, а заряд происходит в течение половины периода.

В схеме имеется защита батареи от неконтролируемого разряда в случае случайного пропадания сетевого напряжения. В этом варианте развития события, реле К1 своими контактами разорвет цепь подсоединения аккумуляторной батареи.

Реле К1 взял старое советское типа РПУ-0 с рабочим напряжением обмотки на 24 В, последовательно с обмоткой включил ограничительное сопротивление. Для этой схемы подойдет практически любой трансформатор мощностью не ниже 150 Вт с напряжением во вторичной обмотке примерно 22-25 В.

Технология восстановления автомобильных аккумуляторов переменным током позволяет достаточно быстро снизить внутреннее сопротивление практически до заводского уровня, при минимальном нагреве электролита. Положительный полупериод тока задействован полностью при зарядке автомобильных батарей с минимальной рабочей сульфатацией, когда мощности импульсного тока заряда хватает для восстановления пластин АКБ.

При восстановлении АКБ с длительным сроком эксплуатации рекомендуется использовать оба полупериода переменного тока в соизмеримых величинах: при зарядном токе величиной в 0,05С (С — емкость), ток разряда выбирается в диапазоне 1/10-1/20 оттока заряда. Интервал времени тока заряда не должен быть более 5 мс, т. о процесс восстановление должен происходить на максимальном уровне напряжения положительной части синусоиды, при которой энергии импульса хватает для химического перехода сульфата свинца в аморфное состояние. Освободившийся остаток SO4 повышает плотность электролита до тех пор, пока все кристаллы сульфата свинца не восстановятся, при этом из-за происходящего электролиза напряжение на аккумуляторной батареи возрастет.

При зарядно-восстановительных процедурах требуется использовать максимальную токовую амплитуду при минимуме времени его действия. Крутой передний фронт токового импульса расплавляет кристаллы сульфата, когда другие методы не приносят ощутимых результатов. Время между зарядом и разрядом требуется также для охлаждения пластин и рекомбинацию электронов в кислотном электролите. Плавное падение тока во второй полуволне синусоиды создает необходимые условия для торможения электронов при переходе тока в отрицательную полуволну синусоиды через точку нуля. Для создания необходимых условий восстановления используется тиристорно-диодная схема регулирования тока. Тиристор во время своего переключения вырабатывает достаточно крутой передний токовый фронт и практически не подвержен нагреву во время работы, в отличии от возможного транзисторного исполнения. Синхронизация импульса тока заряда с питающим напряжением снижает вероятный уровень помех.

Момент роста уровня напряжения на батареи контролируется добавлением в схему отрицательной обратной связи по напряжению, с батареи на ждущий мультивибратор на микросхеме таймере DA1. Также в конструкции используется температурный датчик для защиты от перегрева основных силовых компонентов. Токовый регулятор заряда позволяет задать начальный уровень тока восстановления, исходя от параметров емкости аккумулятора. Контроль среднего тока заряда осуществляется по аналоговому амперметру с линейной шкалой и внутренним шунтом. В его оказаниях токи суммируются, поэтому показания среднего зарядного тока будут занижены.

Не следует долгое время подавать на батарею только отрицательную токовую полуволну — это приводит к разряду батареи с переполюсовкой пластин. В заряженной батареи всегда идет саморазряд из-за разного уровня плотности верхнего и нижнего уровня электролита в банке и других факторов.

В состав принципиальной схемы входит ждущий мультивибратор — генератор синхронизированных импульсов на широко распространенном таймере КР1006ВИ1, усилитель амплитуды токового импульса выполнен на биполярном транзисторе VT1, температурный датчик и усилитель напряжения отрицательной обратной связи на VT2 Напряжение синхронизации идет с двухполупериодного выпрямителя на диодах VD3, VD4 и поступает через резисторный делитель напряжения R13, R14 на второй вход нижнего компаратора микросборки DA1.

Частота импульсов ждущего мультивибратора определяется параметрами резисторов R1, R2 и емкости С1. В начальный момент на третьем выходе DA1 имеется высокий уровень напряжения при отсутствии на втором входе DA1 напряжения выше 1/3 Uп, после его появления микросборка срабатывает с порогом, заданным резистором R14, на выходе генерируется импульс с периодом 10 мс и длительностью, зависящей от положения регулятора переменного сопротивления R2, — времени заряда емкости конденсатора С1. Сопротивление R1 задает минимальную длительность импульсов на выходе. Пятый вывод микросборки имеет прямой доступ к точке 2/3 Un внутреннего делителя напряжения. С ростом напряжения на батареи в конце заряда отпирается биполярный транзистор VT2 цепи отрицательной обратной связи и падает напряжение на пятом выводе DA1, с длительность импульса сокращается, время работы открытого тиристора падает. Импульс с третьего пина таймера через резистор R5 следует на вход усилителя на VT1.

Усиленный импульс через оптопару поступает на управляющий электрод тиристора, тиристор открывается и подает в цепь восстановления автомобильного аккумулятора импульс двухполупериодного тока заряда с продолжительностью, зависящей от положения движка переменного сопротивления R2. Резисторы R9, R10 защищают оптопару от возможных перегрузок. Температура силовых компонентов контролируется терморезистором R11, установленного в делителе цепи отрицательной ОС. С ростом температуры сопротивления терморезистора падает и шунтирование транзистором VT2 пятого вывода микросхемы, длительность импульса падает — ток тоже.

Питание таймера в схеме стабилизировано стабилитроном VD1. Электронная конструкция питается от вторичной обмотки трансформатора через VD2-VD4, пульсации сглаживаются емкостью С3. Тиристор питается от двухполупериодного пульсирующего напряжением и выполняет функцию ключа с регулируемым временем включения положительных токовых импульсов, отрицательный импульс следует в автомобильный аккумулятор с однополупериодного выпрямителя VD5.

Читайте также:  Где плюс и минус у аккумулятора 18650

В гелевых аккумуляторах нет газа – гелия, в них электролит просто находится в состоянии геля. Поэтому, не стоит опасаться за разгерметизацию, данный тип необслуживаемых аккумуляторов вполне можно открыть, при условии, что его не получается зарядить, и напряжение на нём просело ниже уровня в 10 В.

В гелевых аккумуляторах обязательно имеется электролит на основе воды, которая является типовым расходным материалом АКБ, так как она, при восстановлении с помощью электролиза разрушается на гидроксильную группу и водород. А утечку самого легкого элемента в окружающий воздух, прекратить практически невозможно, т.к водород просачивается через резиновые колпачки-клапаны, находящиеся под внешней пластмассовой крышкой.

Для восстановления гелевого аккумулятора необхожимо сорвать приклеенную верхнюю крышку, и вытащить все колпачки-клапаны. Воды надо долить совсем немного – залитая жидкость будет впитываться в фильтровальную бумагу, поэтому через полчаса проверьте – сколько дистиллированной воды осталось в каждой секции батареи. Ее уровень должен слегка покрывать поверхность пластин, поэтому лишнюю воду рекомендуется откачать с помощью резиновой груши.

Далее переходим к восстановлению длительным заряжанием.

Для этого закрываем все отсеки АКБ на колпачки-клапаны. А также не забываем накрыть их внешней крышкой, и придавливаем ее грузом (приклеим чуть позже). Во время заряда через колпачки будет скидываться избыточное давление, из-за образования водорода, а крышка будет служить для них препятствием.

Потерявшая ёмкость батарея из-за высыхания электролита, н начальный момент заряда не будет потреблять ток от ЗУ, поэтому напряжение следует выбрать в районе 15 В.

Заряжать придётся довольно долго – пока батарея не начнёт потреблять ток. Но если через 15 часов она не "кушает Амперы", то не ждите от моря погоды, а повышайте напряжение зарядного устройства до 20 В и не оставляйте аккумулятор без присмотра, до момента начала потребления тока.

Хорошо «раскачивает» нежелающий заряжаться аккумулятор метод, при котором сначала дают АКБ зарядиться, а потом разряжают её – и так поочерёдно, небольшими временными интервалами. Первые циклы, должны осуществляться под высоким напряжением – в районе 30 В, а в последующих напряжение зарядки нужно плавно снижать до 14 В.

Разряжать подзарядившейся аккумулятор нужно совсем маленькой нагрузкой например лампочкой или резистором на 5 или 10 Вт при этом следите за напряжением на АКБ, чтобы оно не стало ниже 10,5 В.

После того как вам удалось заставить «проблемный» аккумулятор потреблять ток, продолжайте восстанавливать его до полного заряда длительным заряжанием малым током где-то на уровне 0,05 от ёмкости.

Комментировать
256 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector