No Image

Защита от газовой коррозии

89 просмотров
12 декабря 2019

Газовая коррозия

Газовая коррозия — наиболее распространенный вид химической коррозии. При высоких температурах поверхность металла под воздействием газов разрушается.

Газовой коррозии подвержены детали и узлы машин, работающих при высоких температурах, — двигатели поршневого и турбинного типа, ракетные двигатели и т. п. Химическое сродство большинства металлов к кислороду при высоких температурах почти неограниченно, так как оксиды всех технически важных металлов способны растворяться в металлах и уходить из равновесной системы:

В этих условиях окисление всегда возможно, но наряду с растворением оксида появляется и оксидный слой на поверхности металла, который может тормозить процесс окисления.

Скорость окисления металла зависит от скорости собственно химической реакции и скорости диффузии окислителя через пленку, а поэтому защитное действие пленки тем выше, чем лучше ее сплошность и ниже диффузионная способность. Сплошность пленки, образующейся на поверхности металла, можно оценить по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла (фактор Пиллинга—Бэдвордса).

Коэффициент a (фактор Пиллинга — Бэдвордса) у разных металлов имеет разные значения (табл. 1).

Таблица 1. Значение коэффициента a для некоторых металлов

Металл Оксид a Металл Оксид a
Mg MgO 0.79 Zn ZnO 1.58
Pb PbO 1.15 Zr ZrO2 1.60
Cd CdO 1.27 Be BeO 1.67
Al Al2O2 1.31 Cu Cu2O 1.67
Sn SnO2 1.33 Cu CuO 1.74
Ni NiO 1.52 Ti Ti2O3 1.76
Nb NbO 1.57 Cr Cr2O3 2.02
Nb Nb2O3 2.81

Существует три вида пленок, которые могут образоваться:

— тонкие (невидимые невооруженным глазом);

— средние (дают цвета побежалости);

— толстые (хорошо видны).

Чтобы оксидная пленка была защитной, она должна отвечать некоторым требованиям: не иметь пор, быть сплошной, хорошо сцепляться с поверхностью, быть химически инертной по отношении к окружающей ее среде, иметь высокую твердость, быть износостойкой.

Если пленка рыхлая и пористая, кроме того имеет еще плохое сцепление с поверхностью — она не будет обладать защитными свойствами.

Металлы, у которых a

— на поверхности металла, которая непосредственно контактирует с атмосферой, адсорбируются молекулы кислорода;

— металл взаимодействует с газом с образованием химического соединения.

На первой стадии между поверхностными атомами и кислородом возникает ионная связь: атом кислорода забирает у металла два электрона. При этом возникает очень сильная связь, намного сильнее, чем связь кислорода с металлом в окисле. Возможно это явление наблюдается из-за действия на кислород поля, создаваемого атомами металла. После полного насыщения поверхности окислителем, что происходит почти мгновенно, при низких температурах за счет ванн-дер-вальсовых сил может наблюдаться и физическая адсорбция молекул окислителя.

В результате образуется очень тонкая мономолекулярная защитная пленка, которая со временем утолщается, затрудняя подход кислорода.

На второй стадии, из-за химического взаимодействия, окислительный компонент среды отнимает у металла валентные электроны и с ним же реагирует, образуя продукт коррозии.

Если образовавшаяся оксидная пленка будет обладать хорошими защитными свойствами — она будет тормозить дальнейшее развитие процесса химической коррозии. Кроме того, оксидная пленка очень сильно влияет на жаростойкость металла.

Изменение состава металла в результате газовой коррозии. Если образование оксидного слоя при высокой температуре сопровождается интенсивной диффузией кислорода внутрь металла, то это приводит к изменению его состава за счет окисления легирующих компонентов. Особенно это заметно на конструкционных сталях, в поверхностных слоях которых происходит окисление углерода — ферритная полоска, образование которой сопровождается потерей прочности, особенно для тонкостенных изделий. Взаимодействие сталей с окисляющими средами можно представить в виде следующих уравнений:

Последний случай — наиболее опасный, так как водород, растворяясь в стали, создает повышенную хрупкость металла. При тонкостенных конструкциях это влияние газовой коррозии на снижение прочности особенно заметно.

Схема слоистого строения окалины, образующейся на железе при его окислении на воздухе при повышенной температуре.

Распределение никеля, хрома и магния по сечению окалины на сплаве Ni-10% Cr-0,5% Mg после окисления в течение 10 час.

Существует условие сплошности, которое формулируется так: молекулярный объем оксидной пленки должен быть больше атомного объема металла.

Сплошность — способность окисла покрывать сплошным слоем всю поверхность металла.

Если это условие соблюдается, то пленка сплошная и, соответственно, защитная.

Но есть металлы, для которых условие сплошности не является показателем. К ним относятся все щелочные, щелочно-земельные (кроме бериллия), даже магний, который важен в техническом плане.

Для определения толщины образовавшейся на поверхности оксидной пленки, изучения ее защитных свойств применяют множество методов. Защитную способность пленки могут определять во время ее формирования, по скорости окисления металла и характеру изменения скорости во времени. Если окисел уже сформировался, целесообразно исследовать толщину и защитные его свойства, нанося на поверхность какой-нибудь подходящий для этого случая реагент (например раствор Cu(NO3)2, который применяется для железа). По времени проникновения реагента к поверхности можно определить толщину пленки.

Читайте также:  Душевая кабина сколько кг выдерживает поддон

Даже уже образовавшаяся сплошная пленка не прекращает своего взаимодействия с металлом и окислительной средой.

Влияние внешних и внутренних факторов на скорость протекания химической коррозии.

На скорость химической коррозии очень сильное влияние оказывает температура. При ее повышении процессы окисления идут намного быстрее. При этом уменьшение термодинамической возможности протекания реакции не имеет никакого значения.

Особенно сильно влияет переменный нагрев и охлаждение. В защитной пленке вследствие появления термических напряжений образуются трещины. Сквозь трещины окислительный компонент среды имеет непосредственный доступ к поверхности. Формируется новая оксидная пленка, а старая — постепенно отслаивается.

Большую роль в процессе коррозии играет состав газовой среды. Но это индивидуально для каждого металла и изменяется с колебаниям температур. Например, медь очень быстро корродирует в атмосфере кислорода, но устойчива в среде, содержащей SO2. Никель же наоборот, интенсивно корродирует при контакте с атмосферой SO2, но устойчив в средах O2, CO2 и H2O. Хром относительно устойчив во всех четырех средах.

Если давление диссоциации окисла выше давления окисляющего компонента — окисление металла прекращается, он становится термодинамически устойчивым.

Скорость окисления зависит от состава сплава. Возьмем, к примеру, железо. Добавки серы, марганца, фосфора и никеля не влияют на его окисление. Кремний, хром, алюминий — замедляют процесс. А бериллий, кобальт, титан и медь очень сильно тормозят окисление. При высоких температурах интенсифицировать процесс могут вольфрам, молибден, а также ванадий. Это объясняется летучестью или легкоплавкостью их окислов.

Наблюдая за скоростью окисления железа при различных температурах, отметим что с увеличением температуры самое медленное окисление наблюдается при аустенитной структуре. Она является наиболее жаростойкой, по сравнению с другими.

На скорость протекания химической коррозии влияет и характер обработки поверхности. Если поверхность гладкая, то она окисляется немного медленнее, чем бугристая поверхность с дефектами.

Методы защиты от коррозии

Дата добавления: 2016-04-03 ; просмотров: 1363 | Нарушение авторских прав

· — аустенизация стали при температуре 1050¸1100ºC с последующей ее стабилизацией при нагреве 870ºC в течение 4 часов.

· — Применение двухфазных сталей с пониженным содержанием никеля или легированных молибденом;

Для защиты латуни от обесцинкования, происходящего в агрессивной среде и также приводящего к МКК, применяют легирование сплава мышьяком в количестве 0.01÷0.04%.

Алюминиевые сплавы защищают от МКК путем легирования железом, никелем, медью, магнием, плакированием чистым алюминием.

Защита от графитизации чугуна

Для этих целей используют следующие меры:

· — легирование чугуна введением 20% никеля;

· — использование высокохромистых чугунов, содержащих 35% хрома и 2.5% кремния;

· — снижение концентрации кислорода в среде эксплуатации конструкции.

Защита металлов от газовой коррозии

Для защиты от газовой коррозии применяют жаростойкое легирование, нанесение покрытий, введение в газовую среду компонентов, образующих на поверхности металла защитную плёнку. Жаростойкость железа мала, что исключает применение низколегированных углеродистых сталей в окислительных средах при t > 500ºC. В настоящее время созданы стали, устойчивые к процессу образования окалины, скорость окисления которых в тысячи раз меньше, чем железа.

Характеристики отдельных сплавов, применяемых в средах, где может проявляться газовая коррозия.

Скорость окисления зависит от содержания хрома в сплаве, при увеличении его концентрации скорость окисления сплава уменьшается. Для эксплуатации сплава при t = 800ºC содержание хрома должно быть >10%; при t = 950ºC — 18%; а при t = 1100ºC — 30%.

Никель меньше чем хром влияет на коррозию железа. Введение никеля до 30% не изменяет качественный состав окалины (FeO – Fe3O4 – Fe2O3). Стали, легированные никелем, устойчивы к окислению при отсутствии в газовой фазе серы, её соединений и водяного пара, которые способствуют коррозионному растрескиванию. Скорость окисления сплава Fe-Ni, содержащего никеля 30¸40%, равна скорости окисления чистого никеля.

Добавка алюминия повышает стойкость железа к окислению, что объясняется образованием оксида алюминия (Al2O3) на поверхности сплава. При высоких температурах образуются шпинели FeAl2O4. При содержании Al в сплаве 8¸10% скорость окисления железа при температуре 900°C уменьшается в 35 раз. Высоколегированные сплавы Fe-Al мало пластичны и имеют низкую жаропрочность.

При содержании кремния 3¸10% стойкость железа к окислению увеличивается при температуре >1000°C в 15 раз. На поверхности сплава образуется слой силиката железа Fe2SiO4.

Содержание Al > 8%. Скорость коррозии уменьшается в результате образования фазы NiAl2O4 во внутренней зоне окалины. Внешняя зона окалины Al2O3 подвержена образованию трещин. При концентрации алюминия больше 17% окалина состоит из одной фазы a×Al2O3 и скорость окисления на три порядка ниже, чем для чистого никеля.

Читайте также:  Газовые обогреватели для баллонов с пропаном

Использование многокомпонентных сплавов

Многокомпонентные легированные сплавы железа на основе Fe-Cr обладают высокой жаропрочностью. Жаропрочность стали, содержащей 18% Cr и 8% Ni равна жаростойкости сплава железа, содержащего 25% хрома. Скорость окисления сталей, содержащих 11¸16% Cr и 40¸70% Ni, при температуре 900°C равна 0.25 мм/год.

На основе системы Fe-Cr-Ni разработаны многие марки сталей, обладающих высокой коррозионной стойкостью в различных газовых средах. В качестве дополнительных легирующих добавок используют: Al, Co, Mo, W, Ti, Mn, Si, Nb, B, Ta, Zn. При введении в сталь, содержащую 20% Cr, дополнительно 0.17¸1.36% La отслоение оксидной пленки, образующейся при температуре 1000°C на воздухе, прекращается.

Сплав Ni-Cr-Al используется для нанесения покрытий на никелевые сплавы, он имеет большую жаростойкость при температуре 1000°C, а константа его окисления равна 5×10 -9 кг 2 /м 4 с. Легирование сплава Ni-20Cr кремнием (» 3%) снижает скорость его изотермического окисления вдвое при температуре 1100-1200°C и в десятки раз скорость циклического окисления. Кремний подавляет образование оксида никеля NiO и NiCr2O4, стимулирует рост слоя Cr2O3. Добавка 4% кремния снижают в 3¸4 раза скорость окисления сплава на основе Ni-Cr. Сплав высокой жаростойкости Ni-23Cr-18W дополнительно легируется Si, Hf, Al, Y, где их концентрация » 0.3%.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 266
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 602
  • БГУ 153
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 962
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 119
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1967
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 300
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 409
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 497
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 130
  • ИжГТУ 143
  • КемГППК 171
  • КемГУ 507
  • КГМТУ 269
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2909
  • КрасГАУ 370
  • КрасГМУ 630
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 139
  • КубГУ 107
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 367
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 330
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 636
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 454
  • НИУ МЭИ 641
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 212
  • НУК им. Макарова 542
  • НВ 777
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1992
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 301
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 119
  • РАНХиГС 186
  • РОАТ МИИТ 608
  • РТА 243
  • РГГМУ 118
  • РГПУ им. Герцена 124
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 122
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 130
  • СПбГАСУ 318
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 147
  • СПбГПУ 1598
  • СПбГТИ (ТУ) 292
  • СПбГТУРП 235
  • СПбГУ 582
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 193
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 380
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1655
  • СибГТУ 946
  • СГУПС 1513
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2423
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 324
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 306

Полный список ВУЗов

Чтобы распечатать файл, скачайте его (в формате Word).

Для защиты металлов от наиболее распространенного и вредного вида химической коррозии – газовой коррозии существуют следующие основные методы:

1) жаростойкое легирование, т.е. введение в сплав компонентов, повышающих жаростойкость;

2) защитные покрытия, т.е. нанесение на поверхность металлических конструкций защитного металлического или неметаллического слоя;

3) защитные или контролируемые атмосферы, т.е. искусственно создаваемые газовые атмосферы. Этот метод применяется главным образом при термообработке металлов;

4) уменьшение окисления металлов, достигаемое различными путями.

Читайте также:  Березовый деготь от колорадского жука

При оценке коррозионной стойкости металлов часто пользуются шкалой (табл 5.5.1).

Таблица 5.5.1 – Десятибалльная шкала коррозионной стойкости металлов

1. Для повышения жаростойкости металлы легируют элементами, которые, окисляясь, образуют на поверхности сплава или свой защитный оксид (например Al2O3, SiO2 и др.) или двойной с основным металлом оксид типа шпинели с повышенными защитными свойствами. В стали вводят Cr (до 30%), Al(до 10%), Si(до 5%), в Ni в Co-Cr(до 30%), Cu, Be, Mq и др. Малые добавки легирующих элементов могут повысить жаропрочность металлов, уменьшая в их оксидах число дефектов, по которым идет диффузия реагентов. Для этого валентность ионов легирующих элементов должна быть меньше валентности ионов основного металла, образующего оксид с недостатком металла (Сu2O, FeO, NiO, CoO) и большие валентности ионов основного металла, образующего оксид с избытком металла (ZnO, CdO, BeO, Al2O3, α-Fe2O3, TiO2 и др.). Улучшение жаростойкости стали малыми добавками Cr, Co, Si, Al бывает также обусловлено повышением температуры появления наименее защитного при высоких температурах оксида FeO –вюстита.

2. Для защиты металлов от газовой коррозии применяют:

а) металлические покрытия (для стали –Al ,Cr, Si и некоторые жаростойкие сплавы), наносимые термодиффузионным методом, наплавкой, плакированием и напылением;

б) неметаллические покрытия – жаростойкие эмали, тугоплавкие соединения (карбиды, нитриды, бориды, силициды), металлокерамические покрытия (получаемые введением в оксиды и другие тугоплавкие соединения металлических добавок);

в) защитные термостойкие краски и обмазки (ингибированные смазки) – для временной защиты деталей при их нагреве.

3. Изменение газовой среды до состава, исключающего возможность протекания коррозионного процесса, применяется при термообработке металлов в виде защитных (или контролируемых) атмосфер. В качестве защитных атмосфер применяют, помимо баллонных газов (N2, H2, углеводороды), диссоциированный аммиак, очищенный от кислорода технический азот и очищенные и осушенные продукты частичного сжигания топлива, главным образом газа. Уменьшение агрессивности нагревающих металл газов может быть достигнуто введением в них паров лития, а частичное устранение ванадиевой коррозии (ускоренного окисления сталей под влиянием золы топлива, содержащего V2O5) введением в топливо, содержащего ванадий, присадок CaO, MqO, SiO2 и др., образующих с V2O5 тугоплавкие соединения.

Введение в газовую атмосферу SO2 и CO2 сильно снижают скорость окисления магния за счет образования на нем защитных пленок MqSO4 и MqCO3.

4. Малоокислительный нагрев является во многих случаях достаточно эффективным и более экономичным чем полное прекращение окисления металлов при применении защитных атмосфер.

5. Рациональное конструирование:

а) рациональное решение конструктивных форм и элементов аппаратуры, устраняющие возможность ускорения коррозии металла и удлиняющие срок службы конструкции: герметичность устройств при приме- нении защитных атмосфер; отсутствие в печах элементов соприкасающихся с защитной атмосферой и вызывающих нежелательное изменение ее состава (кладка, окисленные металлы, водяной затвор и т.д.); надежное отделение продуктов сжигания топлива от защитной атмосферы (применение муфелей); отсутствие в печах конструкционных элементов, разрушающихся при взаимодействии с защитной атмосферой; равномерное распределение теплового потока на нагреваемой металлической поверхности для устранения перегрева; закатка концов теплообменных труб валиком для защиты их от обгорания; нейтрализация влияния высоких температур холодным газовым слоем и др.

б) специальные предохраняющие устройства: тепловые защитные экраны, защита концов теплообменных труб от обгорания керамическими втулками.

Ингибиторы атмосферной коррозии подразделяются на нелетучие – контактные, и летучие – парофазные.

Нелетучие ингибиторы применяют в основном при хранении изделий на складе. Их наносят либо на поверхность изделий, при этом их действие ограничено местом контакта. Примером нелетучего ингибитора атмосферной коррозии может служить NaNO2 (стальное изделие сначала погружают в горячий 25…30% водный раствор NaNO2, затем извлекают и сушат). При этом на поверхности изделия образуется пассивная пленка, обладающая высокими защитными свойствами, а также слой сухого NaNO2, непрерывно возобновляющий пассивную пленку в случае ее механического повреждения.

Летучие ингибиторы применяют для защиты как в сухой, так и во влажной атмосфере. Как правило, это нетоксичные вещества с невысоким, но достаточным для защиты давлением паров. Испаряясь, они быстро заполняют окружающую изделие воздушную среду. Последующая адсорбция их паров на поверхности металла приводит к образованию пленок с анодным и катодным механизмами защитного действия, а также обладающими гидрофобными свойствами. К летучим ингибиторам относятся нитриты и карбонаты замещенных аминов, сложные эфиры карбоновых кислот и др. соединения. Особенно эффективен среди них нитрит дициклогексиламмония, одним граммом которого можно насытить около 550 м3 воздуха, сделав его мало агрессивным по отношению к стали. При правильной упаковке и надлежащей концентрации ингибитора изделия могут храниться, не подвергаясь коррозии, более 10 лет.

Комментировать
89 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector