No Image

Заземление естественное и искусственное

СОДЕРЖАНИЕ
208 просмотров
12 декабря 2019

В качестве естественных заземлителей используют:

  • проложенные в земле водопроводные и другие металлические трубопроводы различных жидкостей и газов, кроме горючих и взрывоопасных;
  • металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей;
  • свинцовые оболочки кабелей, проложенных в земле; рельсовые пути магистральных неэлектрифицированных железных дорог, подъездные пути и др.

Для искусственных заземлителей применяются обычно вертикальные и горизонтальные электроды. В качестве вертикальных электродов используются стальные трубы и прутки, а также угловая сталь длиной не менее 2,5-3 м. Верхние концы погруженных в землю вертикальных электродов соединяют стальной полосой с помощью сварки: образуется так называемый контур заземления.

Для заземления электроустановок в первую очередь должны быть использованы естественные заземлители. Использование естественных заземлителей экономически весьма эффективно, так как позволяет экономить металл, а также и трудозатраты на сооружение искусственных заземлителеи. Естественные заземлители можно использовать без искусственных, если они обеспечивают требуемое ПУЭ сопротивление растеканию.

Заземляющие проводники выполняются обычно из полосовой стали. Они прокладываются открыто по стенам и другим конструкциям зданий на металлических опорах. В качестве заземляющих проводников допускается использовать различные металлические конструкции, в том числе фермы и колонны зданий, подкрановые пути, шахты подъемников, стальные трубы электропроводок, алюминиевые оболочки кабелей, обрамление кабельных каналов и т. п.

В производственных помещениях заземляющие проводники с двумя или более ответвлениями образуют магистраль заземления. Присоединение заземляющего оборудования к магистрали заземления осуществляется отдельными проводниками. Последовательное включение заземляемых корпусов не допускается.

К естественному заземлению принято относить те конструкции, строение которых предусматривает постоянное нахождение в земле. Однако, поскольку их сопротивление ничем не регулируется и к значению их сопротивления не предъявляется никаких требований, конструкции искусственного заземления нельзя использовать в качестве заземления электроустановки. К естественным заземлителям относят, например, трубы.

Искусственное заземление

Искусственное заземление — это преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования, с заземляющим устройством. Заземляющее устройство (ЗУ) состоит из заземлителя (проводящей части или совокупности соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы.

Качество заземления определяется значением сопротивления заземления/ сопротивления растеканию тока (чем ниже, тем лучше), которое можно снизить, увеличивая площадь заземляющих электродов и уменьшая удельное электрическое сопротивление грунта: увеличивая количество заземляющих электродов и/или их глубину; повышая концентрацию солей в грунте, нагревая его и т. д.

Электрическое сопротивление заземляющего устройства различно для разных условий и определяется/нормируется требованиями ПУЭ и соответствующих стандартов.

Разновидности систем искусственного заземления

TN-S пришла в 1930-х на замену TN-C после большого количества электротравм при обрыве нулевого провода, так как сечение нулевого провода обычно бралось 1/3 от толщины сечения фазных проводов.

Электроустановки в отношении мер электробезопасности разделяются на:

· электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно заземленной нейтралью;

· электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;

· электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;

· электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.

В зависимости от технических особенностей электроустановки и снабжающих электросетей, её эксплуатация может требовать различных систем заземления. Как правило, перед проектировкой электроустановки, сбытовая организация выдаёт перечень технических условий, в которых оговаривается используемая система заземления.

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT».

Для электроустановок напряжением до 1 кВ приняты следующие обозначения:

система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;

система TN-С; TN-S; TN-C-S -Рассмотрены выше в Главе 1 «Зануление»;

система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены;

система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Читайте также:  Горшки для цветов из полимерной глины

Первая буква — состояние нейтрали источника питания относительно земли:

Т — заземленная нейтраль (лат. terra); I — изолированная нейтраль (англ. isolation).

Вторая буква — состояние открытых проводящих частей относительно земли:

Т — открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (после N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены (англ. split); С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник) (англ. common); N — нулевой рабочий (нейтральный) проводник; РЕ — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов); PEN — совмещенный нулевой защитный и нулевой рабочий проводники.

TN-системы Системы с глухозаземлённой нейтралью принято называть TN-системами.

Система TN-C. Рабочий ноль и PE-проводник в этой системе совмещены в один провод. Самым большим недостатком была возможность появления фазного напряжения на корпусах электроустановок при аварийном обрыве нуля. Из современных электроустановок, такая система встречается только в уличном освещении из соображений экономии и пониженного риска.

На замену условно опасной системы TN-C была разработана система TN-S, рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция — электроустановки здания применяется совмещённый нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи — отдельный нулевой защитный проводник (PE).

Достоинства: более простое устройство молниезащиты (невозможно появление пика напряжения между PE и N), возможность защиты от КЗ фазы на корпус прибора с помощью обыкновенных "автоматов".

Недостатки: крайне слабая защищенность от «отгорания нуля», т.е. разрушения PEN по пути от КТП к точке разделения. В этом случае на шине PE со стороны потребителя появляется фазное напряжение, которое не может быть отключено никакой автоматикой (PE не подлежит отключению). Если внутри здания защитой от этого служит СУП (под напряжением оказывается все металлическое, и нет риска поражения током при прикосновении к 2 разным предметам), то на открытом воздухе никакой защиты от этого не существует вовсе.

В соответствии с ПУЭ является основной и рекомендуемой системой, но при этом ПУЭ требуют соблюдения ряда мер по недопущению разрушения PEN — механической защиты PEN, а также повторных заземлений PEN воздушной линии по столбам через какое-то расстояние (не более 200 метров для районов с числом грозовых часов в году до 40, 100 метров для районов с числом грозовых часов в году более 40).

В случае, когда эти меры соблюсти невозможно, ПУЭ рекомендуют TT. Также ТТ рекомендуется для всех установок под открытым небом.

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции.

Достоинства: высокая устойчивость к разрушению N по пути от ТП к потребителю. Это разрушение никак не влияет на PE.

Недостатки: требования более сложной молниезащиты (возможность появления пика между N и PE), а также невозможность для обычного автоматического выключателя отследить КЗ фазы на корпус прибора (и далее на PE). Это происходит из-за довольно заметного (30-40 Ом) сопротивления местного заземления.

Читайте также:  Блюда из рыбы рецепты быстро и вкусно

В силу вышеперечисленного ПУЭ рекомендуют ТТ только как "дополнительную" систему (при условии, что подводящая линия не удовлетворяет требования TN-C-S по повторному заземлению и механической защите PEN), а также в установках на открытом воздухе, где есть риск одновременного соприкосновения с установкой и с физической землей (или же физически заземленными металлическими элементами). ТТ требует обязательного применения УЗО. Обычно устанавливают вводное УЗО уставкой 300-100 мА, которое отслеживает КЗ между фазой и PE, а за ним — персональные УЗО для конкретных цепей на 30-10 мА для защиты людей от поражения током. Молниезащитные устройства, такие, как ABB OVR, различаются по конструкции для систем TN-C-S и TT, в последних установлен газовый разрядник между N и PE и варисторы между N и фазами.

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в такой системе будет низким и не повлияет на условия работы присоединённого оборудования. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения, к которым предъявляются повышенные требования надёжности и безопасности, например в больницах для аварийного электроснабжения и освещения.

Если в городской квартире с занулением все более или менее ясно, то обладателям собственного дома есть над чем голову поломать.

Как правило, подвод в такие дома осуществляется посредством ВЛ электропередачи, и щиток (который, как правило, выполнен со всеми возможными нарушениями ПУЭ) в доме не заземлен (да и не может быть заземлен гетинакс или дерево). В таких случаях использовать приходящий N-проводник еще и в качестве PE, мягко говоря, опрометчиво.

При обрыве нулевого провода на линии (на опорах электропередачи он, кстати, в самом низу, за исключением опор, по которым проброшена еще и сеть уличного освещения) при однофазном питании мы имеем обратку на корпусе приборов, а при трехфазном — то же плюс разноименную фазу на нулевом проводнике. При обрыве на линии (дерево, например, упало) мы имеем все шансы получить чистую фазу на нуле (в этом случае выручает защитное отключение при превышении напряжения в сети. См. п. 7.1.21 ПУЭ). В общем, необходимо что-то изобретать с заземлением. Ведро закапывать не советую — если вдруг поможет, то ненадолго. Посмотрим, что по этому поводу говорят ПУЭ:

1.7.39. В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.

В обоснованных случаях рекомендуется выполнять защитное отключение (для переносного электроинструмента, некоторых жилых и общественных помещений, насыщенных металлическими конструкциями, имеющими связь с землей).

1.7.70. В качестве естественных заземлителей рекомендуется использовать:

  1. проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих и взрывчатых газов и смесей, канализации и центрального отопления;
  2. обсадные трубы скважин;
  3. металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей;
  4. металлические шунты гидротехнических сооружений, водоводы, затворы и т. п.;
  5. свинцовые оболочки кабелей, проложенных в земле. Алюминиевые оболочки кабелей не допускается использовать в качестве естественных заземлителей. Если оболочки кабелей служат единственными заземлителями, то в расчете заземляющих устройств они должны учитываться при количестве кабелей не менее двух;
  6. заземлители опор ВЛ, соединенные с заземляющим устройством электроустановки при помощи грозозащитного троса ВЛ, если трос не изолирован от опор ВЛ;
  7. нулевые провода ВЛ до 1 кВ с повторными заземлителями при количестве ВЛ не менее двух;
  8. рельсовые пути магистральных неэлектрофицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами.

1.7.71. Заземлители должны быть связаны с магистралями заземлений не менее чем двумя проводниками, присоединенными к заземлителю в разных местах. Это требование не распространяется на опоры ВЛ, повторное заземление нулевого провода и металлические оболочки кабелей.

1.7.72. Для искусственных заземлителей следует применять сталь. Искусственные заземлители не должны иметь окраски. Наименьшие размеры стальных искусственных заземлителей приведены ниже:

  • Диаметр круглых (прутковых) заземлителей, мм:
  • Неоцинкованных — 10
  • Оцинкованных — 6
  • Сечение прямоугольных заземлителей, мм 2 — 48
  • Толщина прямоугольных заземлителей, мм — 4
  • Толщина полок угловой стали, мм — 4
  • Читайте также:  Гриль в микроволновке как пользоваться видео

    Сечение горизонтальных заземлителей для электроустановок напряжением выше 1 кВ выбирается по термической стойкости (исходя из допустимой температуры нагрева 400°С).

    Не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т. п.

    Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора.

    В случае опасности коррозии заземлителей должно выполняться одно из следующих мероприятий:

    • увеличение сечения заземлителей с учетом расчетного срока их службы;
    • применение оцинкованных заземлителей;
    • применение электрической защиты.

    В качестве искусственных заземлителей допускается применение заземлителей из электропроводящего бетона.

    Итак, смотрим на возможность использования естественных заземлителей. Если такая возможность есть, то делаем отвод от них. Отвод делаем только посредством сварки. В качестве заземляющего проводника используем полосовую сталь сечением не менее 48 мм 2 при толщине не менее 4 мм, или угловую сталь с толщиной полки не менее 2,5 мм. Полосу или уголок заводим в помещение, где можно развести или контур заземления (стальная полоса сечением не менее 24 мм 2 , толщиной не менее 3мм), или, приварив к полосе (уголку) болт, заводим на него медный проводник (от 2.5 мм 2 ), который и будет PE-проводником.

    Изготовление искусственного заземлителя — достаточно непростая задача, хотя бы исходя из объема грунта, который требуется перекидать.

    Но прежде чем взять в руки лопату, нам понадобятся некоторые расчеты и некоторые данные.

    Для начала нам необходимо знать удельное сопротивление грунта.

    Тип грунта Удельное сопротивление
    (Ом · м)
    каменистый грунт:
    граниты, гнейсы 700…10 6
    сланец глинистый, известняк, ракушечник 100…1000
    песок при залегании грунтовых вод:
    глубже 5 м 1000
    до 5 м 500
    почва (чернозем и др.) 200
    супесь влажная, мергель 150
    суглинок полутвердый или лессовидный 100
    мел или глина полутвердая 60
    сланцы графитовые, мергель глинистый 50
    суглинок пластичный 30
    торф, глина пластичная 20
    вода равнинной реки 50
    подземные водоносные слои (разной минерализации) 5…50
    морская вода 1

    Следует учитывать, что заземлители монтируются на глубине, превышающей глубину промерзания. Скажем, для средней полосы вертикальный стержень забивается из траншеи глубиной более 0.6 м.

    Ниже приводятся формулы для расчета сопротивления заземлителей.

    Для вертикально заглубляемого стержня, у которого верхний конец находится на глубине до 0,8 м:

    где — длина стержня, м; d — диаметр стержня, м; t — расстояние от поверхности земли до вершины стержня, м; — расчетное удельное сопротивление, Ом·м.

    где — коэффициент сезона для вертикальных стержней. Для Московского региона =1.6…1.8. Собственно, коэффициент этот зависит от средней температуры летом, зимой и количества осадков в регионе. Чем ниже средняя температура, тем больше коэффициент (для Архангельска 1.8…2.0; для Краснодара — 1.2…1.4).

    Сопротивление заземления горизонтальной полосы длиной l (м) и шириной b (м), расположенной на глубине t (м) от поверхности земли, можно подсчитать по формуле:

    — коэффициент сезона для горизонтальных заземлителей (для Москвы 3.5…4.5).

    Пример 1:

    Рассчитаем сопротивление заземлителя из стального прутка диаметром 10 мм, длиной 5 м, забиваемого из приямка глубиной 1 м.

    Напоминаю, что сопротивление заземляющего устройства в сети 380/220 должно быть не больше 4 Ом.

    Пример 2:

    Попробуем произвести расчет реального заземляющего устройства для некоего дома с длиной стены 20 м (пусть он квадратный будет). Для того, чтобы обеспечить наилучшее растекание тока и выровнять потенциал, изготовим наше устройство из шести стержней, рассчитанных выше и забитых равномерно по периметру дома. Стержни будут соединены между собой стальной полосой с шириной стороны 30 мм.

    Сначала рассчитаем сопротивление горизонтального заземлителя:

    Суммарное сопротивление вертикальных заземлителей равно 40/6=6.7 Ом

    Общее сопротивление заземляющего устройства будет равно:

    Можно сказать, что уложились. Далее дело за замерами.

    Ввод в помещение осуществляется с не менее чем двух разных точек (диаметрально противоположных) заземлителя. Все соединения выполняются только посредством сварки.

    Еще один маленький момент. Для того чтобы копать вглубь и вширь, надо иметь четкое и однозначное представление о том, что находится в земле. Даже имея на руках кальку с нанесенными на ней коммуникациями, осторожный человек обязательно пригласит представителей организаций, чьи интересы могут быть, так сказать, задеты. Лицензия на раскопки — само собой. К вопросу о перестраховке… Очень неприятно войти ломом в кабель 10 кВ. Или порвать, к примеру, оптоволоконный кабель. Впрочем, в загородном доме и даче риск наткнуться на «сюрприз» меньше.

    Комментировать
    208 просмотров
    Комментариев нет, будьте первым кто его оставит

    Это интересно
    Adblock detector