No Image

Активное и реактивное напряжение цепи

1 179 просмотров
12 декабря 2019

Умножив стороны треугольников напряжений (см. векторные диаграммы рис. 2.9, б, 2.10, б, 2.11, б) на ток I, получим треугольники мощностей.

Стороны треугольников мощностей соответственно означают:

— Р = UrI = I 2 r — активная мощность цепи, Вт, кВт (рис 2.9, г, 2.10, г, 2.11,г и ж);

— QL = ULI = I 2 xL — реактивная индуктивная мощность цепи, обусловленная энергией магнитного поля, вар, квар (рис. 2.9, г);

— QС = UСI = I 2 хС — реактивная емкостная мощность цепи, обусловленная энергией электрического поля, вар, квар (рис. 2.10, г);

— Q = QL — QС = I 2 x — реактивная мощность цепи, вар, квар (рис 2.11, г и ж), это та мощность, которой приемник обменивается с сетью;

— S = UI = I 2 z — полная мощность цепи. В • А, кВ • А (рис. 2.9, г, 2.10, г, 2.11, г и ж);

— cos φ = r/z = P/S — коэффициент мощности цепи (рис. 2.9, г, 2.10, г, 2.11, г и ж).

Из треугольников мощностей можно установить следующие связи между Р, Q, S и cos φ:

P = S cos φ = UI cos φ;

Q = S sin φ = UI sin φ;

За единицу активной мощности принят ватт (Вт) или киловатт (кВт), реактивной мощности — вольтампер реактивный (вар) или киловольтампер реактивный (квар), полной мощности — вольтампер (ВА) или киловольтампер (кВ • А).

Реактивные (индуктивная, емкостная) мощности, обусловленные соответственно энергией магнитного поля индуктивности и электрического поля емкости, не совершают никакой полезной paботы, однако они оказывают существенное влияние на режим работы электрической цепи. Циркулируя по проводам трансформаторов, генераторов, двигателей, линий передач, они нагревают их. Поэтому расчет проводов и других элементов устройств переменного тока производят, исходя из полной мощности S, которая учитывает активную и реактивную мощности.

Рис. 2.13. Схема включения приборов для измерения активной, реактивной и полной мощностей цепи, а также ее параметров

Коэффициент мощности имеет большое практическое значение: он показывает, какая часть полной мощности является активной мощностью. Полная мощность и коэффициент мощности наряду с другими параметрами являются расчетными величинами и в конечном счете определяют габаритные размеры трансформаторов, генераторов, двигателей и других электротехнических устройств.

Измерение активной, реактивной, полной мощностей и cos φ, а также параметров цепи, например r и L, можно произвести с помощью ваттметра, амперметра и вольтметра, включенных в цепь по схеме, изображенной на рис. 2.13.

Ваттметр измеряет активную мощность Р цепи. Полная мощность цепи равна произведению показаний вольтметра и амперметра.

Активное сопротивление находят из формулы:

Полное сопротивление цепи

Индуктивность L определяют из формулы

Пример 2.1. Приборы, включенные в цепь рис 2.13, показывают Р = 500 Вт, I = 5 А, U= 400 В.

Определить активное сопротивление r и индуктивность цепи L, если частота сети f = 50Гц.

Решение. Активное сопротивление цепи

r = P/I 2 = 500/5 2 = 20 Ом.

Индуктивное сопротивление цепи

Пример 2.2. Определить ток, полную, активную и реактивную мощности, а также напряжения на отдельных участках цепи, изображенной на рис. 2.11, а. если r = 40 Ом. L = 0,382 Гн, С = 35,5 мкФ, U = 220 В, частота сети f = 50 Гц.

Решение. Индуктивное сопротивление цепи

xL = 2πfL = 2 • 3,14 • 50 • 0,382 = 120 Ом.

Емкостное сопротивление цепи

Полное сопротивление цепи

Ток в цепи:

I = U/z = 220/50 = 4,4 А.

Коэффициент мощности цепи:

cos φ = r/z = 40/50 = 0,8.

Полная, активная и реактивная мощности:

S = UI = I 2 z = 220 • 4,4 = 4,42 • 50 = 970 В • А.

Р = S cos φ = I 2 r = 970 • 0,8 = 4,42 • 40 = 775 Вт;

Q = S sin φ = I 2 (xL — xС) = 970 • 0,56 = 4,42 (120 — 90) = 580 вар.

Напряжения на отдельных участках цепи:

Пример 2.3. Определить характер нагрузки, полную, активную и реактивную мощности цепи, в которой мгновенные значения напряжения и тока составляют:

u = 282 sin (ωt + 60°),

i = 141 sin (ωt + 30°).

Решение. Угол начальной фазы напряжения (ψ1 = 60°) больше, чем тока (ψ2 = 30°), поэтому напряжение опережает по фазе ток на угол φ = ψ1 — ψ2 = 60 — 30 = 30° и нагрузка имеет активно-индуктивный характер.

Полная мощность цепи:

Активная мощность цепи:

Р = S cos φ = 20 000 cos 30° = 20 000 ( /2) — 17 300 Вт

Реактивная мощность цепи:

Q = S sin φ = 20 000 sin 30° = 20000 • 0,5 = 10 000 вар.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8810 — | 7168 — или читать все.

Читайте также:  Баковая смесь для обработки сада весной

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Как и в общей теории колебательных движений, в теории переменных токов большую пользу приносят векторные диаграммы. Очевидно, что синусоидально изменяющуюся электродвижущую силу

можно изобразить как проекцию на ось ординат вращающегося против часовой стрелки с угловой скоростью вектора, длина которого равна и начальное положение которого в момент совпадало с осью абсцисс.

Спросим себя, как изобразится в векторной диаграмме ток, протекающий под влиянием синусоидальной электродвижущей силы через катушку, обладающую индуктивностью

Рис. 341. Векторная диаграмма для случая Индуктивного сопротивления.

Рис. 342. Векторная диаграмма для случая емкостного сопротивления.

Мы видели, что ток в этом случае отстает на четверть периода от напряжения. Отставание на четверть периода представится в векторной диаграмме отставанием вектора тока на таким образом, вектор «индуктивного» тока будет перпендикулярен к вектору напряжения (рис. 341), отставая от него на 90. Величина этого вектора

Если мы имеем дело с прохождением переменного тока через конденсатор, то ток опережает электродвижущую силу на четверть периода. Это значит, что вектор, изображающий «емкостный» ток, должен опережать вектор напряжения на (рис. 342). Величина этого вектора, как мы видели выше, определяется соотношением

Для случая активного омического сопротивления ток совпадает по фазе с напряжением. Это значит, что вектор тока совпадает по направлению с вектором напряжения, Величина его, конечно, определяется законом Ома.

Ток, вектор которого совпадает с вектором напряжения, называют активным током. Токи же, векторы которых отстают от вектора напряжения или опережают его на называют реактивными токами. Выбор такого названия объясняется тем, что именно активные токи определяют потребление мощности цепью переменного тока, тогда как на возбуждение реактивного тока (т. е. тока, который отстает от напряжения или опережает его на четверть периода) генератор расходует в течение каждой четверти периода столько же энергии, сколько в следующую четверть периода этот реактивный ток отдает генератору обратно (см. рис. 337); в итоге получается, что реактивный ток не производит работы.

В более общем случае, когда сдвиг фазы между током и напряжением определяется углом (в радианах), работа, производимая переменным током за целое (или полуцелое) число периодов, пропорциональна

Действительно, пусть ток отстает от напряжения на угол

Тогда работа тока за период определяется интегралом

а средняя мощность, потребляемая током, определяется отношением этой работы к продолжительности периода:

Если ввести эффективные значения тока и напряжения, то

При т. е. при чисто реактивных токах, мощность, передаваемая по электрической цепи от генератора к нагрузке, в среднем равна нулю.

При каких-либо заданных величинах напряжения и тока, чем меньше разность фаз между ними и соответственно чем ближе к единице, тем большая мощность передается током от генератора к нагрузке; поэтому называют коэффициентом мощности цепи.

Во многих случаях реактивные токи необходимы. Так, если переменным током мы питаем электромагнит, предназначенный, скажем, для подъема железных предметов, то катушка электромагнита, представляя собой в идеальном случае чисто индуктивное сопротивление, будет потреблять от сети реактивный ток, отстающий от напряжения сети на

Однако в большинстве случаев, в частности при питании трансформаторов, которые служат для преобразования переменных напряжений, важен активный ток, который создается при нагрузке вторичной обмотки трансформатора (§ 84). Реактивный же ток, который необходим для создания магнитного поля в сердечнике трансформатора, носит, в сущности, вспомогательный характер; он непосредственно не производит никакой полезной работы.

Предположим, что к сети подключено, как это часто бывает, большое количество трансформаторов. Каждый из них потребляет известный реактивный ток для создания магнитного поля сердечника. Это значительно ухудшает коэффициент мощности установки.

Однако есть возможность добиться совпадения вектора тока с вектором напряжения, воспользовавшись явлением резонанса (§ 83). Для этого включают в сеть, кроме трансформаторов, также и емкость С, подобрав ее так, чтобы ее реактивный ток был равен суммарному реактивному току трансформаторов.

Тогда во внешней цепи будет течь только активный ток, реактивные же токи трансформаторов и емкости взаимно компенсируют друг друга. Они будут циркулировать лишь в цепи: емкость — обмотки трансформаторов, не заходя в питающую сеть и в генератор электроцентрали. Для питающей линии и для генератора электроцентрали и условия их работы будут наивыгоднейшими.

Читайте также:  Влагозарядковый полив плодовых деревьев

Это мероприятие имеет существенное экономическое значение. Совершенно ясно, что электроцентраль и линии электропередачи, не загруженные бесполезным реактивным током, могут быть в большей мере загружены токами активными.

Следует отметить, что представление о реактивном токе как о токе, фаза которого сдвинута на относительно напряжения и который поэтому в среднем не производит никакой работы и не сопровождается рассеянием энергии (на нагревание проводов), конечно, является идеализацией (схематическим упрощением) процессов, происходящих в действительности при прохождении переменного тока через катушки или конденсаторы. Заключение, что фазы токов, проходящих через катушку или конденсатор, отличаются от фазы напряжения на 90°, являлось бы точным только в том случае, если бы прохождение этих токов не было связано с нагреванием проводов и другими потерями (как это было предположено в предыдущем параграфе). Но ток, проходящий через катушку, в отношении нагревания проводов, происходящего по закону Джоуля-Ленца, ничем не отличается от активного тока той же частоты (а при большой частоте сопротивление обмотки катушки вследствие скин-эффекта может оказаться значительным).

Кроме того, часть энергии тока рассеивается вследствие гистерезисных потерь в сердечнике катушки (если он имеется) и токов Фуко в окружающих проводниках, например в металлических «экранах», в которые помещают катушки радиоаппаратов. Может иметь место также утечка тока вследствие несовершенства изоляции и т. п. Потери энергии тока, но обычно меньшие, чем в катушках, наблюдаются и при прохождении тока через конденсаторы. В этом случае они вызываются главным образом некоторым отставанием во времени от напряженности поля поляризации диэлектрика (в той ее части, на которую оказывает

влияние молекулярно-тепловое движение), а также иногда наличием небольших ионных токов проводимости в диэлектрике конденсатора.

Вследствие потерь ток через катушку или конденсатор никогда не является чисто реактивным, т. е. сдвиг его фазы относительно напряжения никогда не бывает точно равным а всегда оказывается меньше, чем на угол который называют иглом потерь. Под действием напряжения в идеальной катушке должен был бы проходить чисто реактивный ток с амплитудой — в действительности же, как показано в конце следующего параграфа (в виде пояснения выведенного там обобщенного закона Ома), возбуждается ток с амплитудой, уменьшившейся вследствие потерь до значения этот фактический ток через катушку представляет собой сумму возникшего в связи с потерями активного тока и реактивного тока

с амплитудой, уменьшившейся до величины что из рис. 343. Согласно рис. 343

Рис. 343. Вследствие потерь амплитуда тока через катушку уменьшается до величины а амплитуда реактивного тока — до величины где угол потерь.

Аналогичные соотношения и такая же диаграмма справедливы и для тока через конденсатор. Так как активный ток — это ток, фаза которого совпадает с напряжением, то очевидно, что мощность, рассеиваемая вследствие потерь, равна Та же мощность будет рассеиваться в цепи, составленной из идеальной катушки с той же индуктивностью и некоторого сопротивления включенного последовательно с ней (называемого сопротивлением потерь), если это сопротивление определено как раз из условия равенства рассеиваемых мощностей:

Как упоминалось выше,

Поэтому получается, что

Подставляя это значение амплитуды активного тока в приведенное выше выражение для тангенса угла потерь, приходим к формуле, которую считают основной при анализе влияния потерь на режим переменного тока в электрических цепях:

По смыслу вывода этой формулы понятно, что аналогичное соотношение справедливо и для тангенса угла потерь в цепи с конденсатором

В радиотехнических расчетах часто применяют величину, обратную тангенсу угла потерь, которую называют добротностью электрической цепи (см. стр. 460 и 485):

Потери в катушках большой индуктивности в высокой мере зависят от конструкции и магнитных свойств сердечника и выполнения обмотки. При правильной конструкции потери в сердечнике и в обмотке (не одинаково зависящие от частоты) должны быть по возможности уравнены.

Для уменьшения потерь на токи Фуко сердечники набирают из тонких листов трансформаторного железа (толщиной 0,5-0,35 мм), покрытых для изоляций их друг от друга тонким (0,05 мм) слоем лака. Потери в таких сердечниках составляют около на килограмм массы сердечника. Сечение проводов выбирают с учетом возрастания их сопротивления вследствие скин-эффекта так, чтобы при эксплуатации потери в обмотке были приблизительно равны потерям в сердечнике. Суммарно потери в сердечнике и обмотке трансформаторов большой мощности (порядка составляют 3—4%, а в трансформаторах очень большой мощности (порядка несколько десятых долей процента

Читайте также:  Бензин для 2 тактных лодочных моторов

Потери в небольших трансформаторах лабораторного типа и в «силовых» трансформаторах, применяемых в радиоаппаратуре, обычно бывают не меньше 10—12% (чаще около Еще большую часть мощности (как правило, 30%) составляют потери в дросселях и трансформаторах усилителей звуковой частоты. Первичная обмотка трансформаторов для токов звуковой частоты состоит из 2000—5000 витков и имеет индуктивность

Катушки резонансных контуров радиочастот имеют индуктивность порядка тысячных (а для коротких волн—миллионных) долей генри. Такая индуктивность создается сравнительно небольшим числом витков провода без ферромагнитного сердечника. В связя с этим потери в радиочастотных катушках невелики — порядка 1% (тангенс угла потерь — от 0,02 до 0,005).

Потери в конденсаторах (за исключением электролитических конденсаторов) обычно не превышают что соответствует тангенсу угла потерь В электролитических конденсаторах тангенс угла потерь может достигать 0,2.

Среди лучших изоляторов (имеющих удельное сопротивление порядка ом-см) выделяются наименьшим значением тангенса угла потерь: кварц плавленый, слюда—мусковит, парафин и полистирол; для них

Читайте также:

  1. X.Элементы квантовой механики.
  2. А. Определение удельного электрического сопротивления максимально влажных пород мостовым способом переменного тока.
  3. А. Открытая дуга переменного тока при высоком напряжении источника
  4. Активные датчики
  5. Активные и пассивные счета
  6. Активные и пассивные элементы электрических цепей. Закон Ома
  7. Активные и реактивные составляющие проводимости и тока
  8. Активные метаболиты и их роль в инициации токсического процесса
  9. Активные методы обучения, их характеристика.
  10. Активные операции коммерческих банков
  11. Активные сглаживающие фильтры

А) Активное сопротивление. Те элементы цепи, на которых происходит необратимое преобразование электрической энергии в другие виды энергии (не только в теплоту), называют активными сопротивлениями. Резистор представляет собой активное сопротивление, обозначают R, измеряют в Ом. Определяют сопротивление по формуле (9):

R = , [Ом].

R – сопротивление проводника, [Ом];

с – удельное сопротивление, [Ом∙м];

l – длина проводника, [м];

S – площадь сечения проводника, [мм 2 ].

В цепях переменного тока при больших частотах ток «отжимается» к поверхности проводника, тем самым уменьшается площадь сечения проводника, по которой проходит ток. Таким образом, в высокочастотных линиях сопротивление проводника зависит от частоты тока. Поэтому в высокочастотных установках вместо обычных проводников возможно применять трубчатые проводники.

На электрических схемах активное сопротивление обозначают:

R

Ток и напряжение на активных элементах совпадают по фазе (см. формулы (21) и (22)):I = Imax ∙ sin (юt + ц)

U = Umax ∙ sin (юt + ц)

U I

Б) Реактивные элементы. На реактивных элементах происходит обмен энергией между реактивным элементом (катушкой индуктивности, конденсатором) и источником электрической энергии.

Индуктивность в цепях переменного тока. Протекающий через катушку переменный ток создает в ней ЭДС самоиндукции, которая в соответствии с правилом Ленца направлена таким образом, чтобы препятствовать изменению тока.

Помимо активного сопротивления на катушке индуктивности действует еще и индуктивное сопротивление, которое обозначают XL и рассчитывают по формуле:

XL = юL = 2рнL, [Ом] (26)

L – индуктивность катушки, т.е. способность создавать электромагнитное поле.

ю — угловая частота;

н — частота переменного тока, [ Гц.]

На электрических схемах катушку индуктивности обозначают:

Ток на катушке индуктивности отстает по фазе от напряжения на угол р / 2:

U

I

Формулы для расчета силы тока и напряжения: I = Im·sinщt (27)

U = Um·sin(щt + 90 0 ) (28)

Емкостное сопротивление. Емкость — это способность тела накопить электрическую энергию. В электротехнике созданы специальные устройства, способные накапливать энергию, их называют конденсаторы. За единицу емкости принимают емкость такого тела, потенциал которого изменяется на 1В при сообщении ему заряда в 1 Кл. Эта единица называется фарад [Ф]. 1Ф – это очень большая емкость. На практике используют такие единицы измерения:

1 мФ = 10 -3 Ф – милифарады;

1 мкФ = 10 -6 Ф – микрофарады;

1 нФ = 10 -9 Ф – нанофарады;

1 пФ = 10 -12 Ф – пикофарады.

Помимо активного сопротивления, конденсаторы обладают еще и емкостным сопротивлением, которое обозначают и рассчитывают по формуле:

XC = , [Oм]. (29)

На электрических схемах емкость ( конденсатор) обозначают:

Ток на коденсаторе опережает напряжение на угол р/2:

I

U

Формулы для расчета силы тока и напряжения: I = Im∙sin (щt + 90 0 ) (30)

U = Um∙sinщt (31)

Дата добавления: 2014-12-17 ; Просмотров: 55166 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Комментировать
1 179 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector