No Image

Аналоговая и цифровая передача данных

СОДЕРЖАНИЕ
118 просмотров
12 декабря 2019

Передача данных (обмен данными, цифровая передача, цифровая связь) — физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу связи, как правило, для последующей обработки средствами вычислительной техники.

Передача данных может быть аналоговой или цифровой (то есть поток двоичных сигналов).

Аналоговая связь является передачей постоянно меняющегося цифрового сигнала.

Цифровая связь является непрерывной передачей сообщений. Сообщения представляют собой либо последовательность импульсов, означающую линейный код, либо ограничивается набором непрерывно меняющейся формы волны, используя метод цифровой модуляции. Такой способ модуляции и соответствующая ему демодуляция осуществляются модемным оборудованием.

Передаваемые данные могут быть цифровыми сообщениями, идущими из источника данных, например, из компьютера или от клавиатуры. Это может быть и аналоговый сигнал — телефонный звонок или видеосигнал, оцифрованный в битовый поток, используя импульсно-кодирующую модуляцию (PCM) или более расширенные схемы кодирования источника (аналого-цифровое преобразование и сжатие данных). Кодирование источника и декодирование осуществляется кодеком или кодирующим оборудованием.

Виды технических систем связи

Виды радиосвязи

Радиосвязь можно разделить на радиосвязь:

Без применения ретрансляторов по длинам волн:

КВ-связь земной (поверхностной) волной

КВ-связь ионосферной (пространственной) волной

УКВ связь прямой видимости

с отражением от Луны или метеоритов

С применением ретрансляторов:

Диапазоны частот, используемые в ОВД

Диапазон, выделенный для ОВД разбивается на три поддиапазона – А, Х, Б, соответственно ограниченных частотами 148 – 149, 171 – 172, 172 -173 МГц. Каждый из поддиапазонов разбит на 40 каналов с шагом 25 кГц.

При проведении оперативных мероприятий в городских условиях или на пересеченной местности следует обязательно учитывать свойства радиоволн, приводящих к уменьшению дальности радиосвязи и руководствуется следующими принципами:

— устанавливать радиосвязь вне помещений без окон, вне подвалов

— металл полностью экранирует радиоволны – радиосвязь внутри металлических конструкций может быть невозможна

— в помещении располагаться на более высоких этажах и ближе к окнам, обращенным в сторону других абонентов связи

— на пересеченной местности – располагаться на холме, гребне. На господствующих высотах можно устанавливать радиостанции-ретрансляторы, находящихся в пределах видимости всех абонентов связи

— при плохой связи принять меры по ее улучшению (сменить местоположение).

Спутниковая, пейджинговая, сотовая, транкинговая системы связи (принцип построения, достоинства и недостатки)

Спутниковая связь —один из видов космической радиосвязи, основанный на использовании искусственных спутников земли в качестве ретрансляторов.

Спутниковая связь осуществляется между земными станциями, которые могут быть как стационарными, так и подвижными.

Достоинства

— большая пропускная способность, обусловленная работой спутников в широком диапазоне гигагерцовых частот. Спутник может поддерживать несколько тысяч речевых каналов связи;

— обеспечение связи между станциями, расположенными на очень больших расстояниях, и возможность обслуживания абонентов в самых труднодоступных точках;

— независимость стоимости передачи информации от расстояния между взаимодействующими абонентами (стоимость зависит от продолжительности передачи или объема передаваемого трафика);

— возможность построения сети без физически реализованных коммутационных устройств, обусловленная широковещательностью работы спутниковой связи. Эта возможность связана со значительным экономическим эффектом, который может быть получен по сравнению с использованием обычной неспутниковой сети, основанной на многочисленных физических линиях связи и коммуникационных устройствах.

Недостатки

— необходимость затрат средств и времени на обеспечение конфиденциальности передачи данных, на предотвращение возможности перехвата данных «чужими» станциями;

— наличие задержки приема радиосигнала наземной станцией из-за больших расстояний между спутником и РТС. Это может вызвать проблемы, связанные с реализацией канальных протоколов, а также временем ответа;

— возможность взаимного искажения радиосигналов от наземных станций, работающих на соседних частотах;

— подверженность сигналов на участках Земля-спутник и спутник-Земля влиянию различных атмосферных явлений.

Пейджинговая связь —специализированный радиоприемник, предназначенный для приема звуковой (тональной) и/или буквенно-цифровой информации по специально выделенному радиоканалу.

Пейджинговые сетисвязи организованы по радиальному и сотовому принципам, могут быть односторонними и двухсторонними.

Принцип построения

— системы сбора информации,

пейджинговый терминал (основной компонент),

Недостатки невозможность подтверждения абонентом получения сообщения

Сотовая связь —один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть.

Принцип построения

общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

Читайте также:  Гипоаллергенные наполнители для подушек

Достоинства

— полный набором услуг, предоставляемых телефонной сетью общего пользования (передача факсов, доступ в Интернет);

— возможностью определения местоположения абонента;

— высокое качество речевых сообщений;

— надежность и конфиденциальность связи, которые обеспечиваются защитой от несанкционированного доступа в сеть;

— малые габариты и вес телефонных аппаратов;

— современные модели имеют встроенные аккумуляторы, позволяющие работать длительное время без подзарядки.

Недостатки

— высокая стоимость минуты разговора;

— необходимость доступа к устройству для подзарядки (аккумулятор автомобиля, или электрическая сеть).

Транкинговые системы связи —система, использующая принцип выбора любого свободного канала.

Транкинг – это совокупность каналов связи, автоматически распределяемых между пользователями.

Принцип построения

В транкинговых системах вместо одного канала, к которому обращается несколько пользователей, содержится группа каналов (символ), доступных всем пользователям данной системы. Когда кто-либо из них захочет провести сеанс связи, он автоматически получает доступ к любому свободному каналу. По окончании соединения канал может быть автоматически предоставлен другому.

Достоинства

дешевое базовое и периферийное оборудование, простота установки и эксплуатации.

Недостатки

при увеличении количества каналов и загрузки системы существенно увеличивается время поиска свободного радиоканала для установления связи;

время установления связи больше, чем у других систем;

невозможность создания многозоновых систем;

Определим данные как объекты, передающие смысл, или информацию. Сигналы – это электромагнитное представление данных. Передача – процесс перемещения данных путем распространения сигналов по передающей среде и их обработки.

Понятия аналоговые и цифровые данные достаточно просты. Аналоговые данные принимают непрерывные значения из некоторого диапазона. Например, звуковые сигналы и видеосигналы представляют собой непрерывно изменяющиеся величины. Цифровые данные, напротив, принимают только дискретные значения; примеры – текст и целые числа.

В системе связи информация распространяется от одной точки к другой посредством электрических сигналов. Аналоговый сигнал представляет собой непрерывно изменяющуюся электромагнитную волну, которая может распространяться через множество сред, в зависимости от частоты; в качестве примеров таких сред можно назвать проводные линии, такие, как витая пара и коаксиальный кабель, оптоволокно; этот сигнал может также распространяться через атмосферу или космическое пространство. Цифровой сигнал представляет собой последовательность импульсов напряжения, которые могут передаваться по проводной линии; при этом постоянный положительный уровень напряжения может использоваться для представления двоичного нуля, а постоянный отрицательный уровень — для представления двоичной единицы.

В беспроводной технологии используются цифровые данные и аналоговые сигналы, так как цифровые сигналы сильнее затухают, чем аналоговые.

Модуляция сигналов

Исторически модуляция начала применяться для аналоговой информации и только потом для дискретной.

Необходимость в модуляции аналоговой информации возникает, когда нужно передать низкочастотный (например, голосовой) аналоговый сигнал через канал, находящийся в высокочастотной области спектра.

ампли т у дн а я мод у ляц и я ( A m plitu d e-S h i ft Keying, ASK);

частот на я мод у л я ция (Freq u ency- S hift K eying, FSK );

фазовая м од у ляц и я ( P hase-Shi f t K eying, PSK).

Отметим, что во всех перечисленных случаях результирующий сигнал центрирован на несущей частоте.

Рисунок 3.2.3 – Модуляция цифровых данных аналоговыми сигналами

При амплитудной модуляции два двоичных значения представляются сигналами несущей частоты с двумя различными амплитудами. Одна из амплитуд, как правило, выбирается равной нулю; т.е. одно двоичное число представляется наличием несущей частоты при постоянной амплитуде, а другое – ее отсутствием (рисунок 3.3.3, а).

Наиболее распространенной формой частотной модуляции является бинарная (Binary FSK, BFSK), в которой два двоичных числа представляются сигналами двух различных частот, расположенных около несущей (рисунок 3.2.3, б). Бинарная частотная модуляция менее восприимчива к ошибкам, чем амплитудная модуляция.

Более эффективной, но и более подверженной ошибкам, является схема многочастотной модуляции (Multiple FSK, MFSK), в которой используются более двух частот. В этом случае каждая сигнальная посылка представляет более одного бита.

Читайте также:  Говяжьи ребра гриль рецепт

На рисунке 3.2.4 представлен пример схемы MFSK с М=4. Входной поток битов кодируется по два бита, после чего передается одна из четырех возможных 2-битовых комбинаций.

Рисунок 3.2.4 – Использование частоты схемой MFSK (M = 4)

Для уменьшения занимаемой полосы частот в модуляторах сигналов с фазовой модуляцией применяют сглаживающие фильтры. Применение сглаживающих фильтров приводит к увеличению эффективности использования полосы, но в тоже время из-за сглаживания уменьшается расстояние между соседними сигналами, что приводит к снижению помехоустойчивости.

При фазовой модуляции для представления данных выполняется смещение несущего сигнала.

Самой простой фазовой модуляцией является двухуровневая модуляция (Binary PSK, BPSK), где для представления двух двоичных цифр используются две фазы (рисунок 3.2.3, в).

Альтернативной формой двухуровневой PSK является дифференциальная PSK (DPSK), пример которой приведен на рисунок 3.2.5. В данной системе двоичный 0 представляется сигнальным пакетом, фаза которого совпадает с фазой предыдущего посланного пакета, а двоичная 1 представляется сигнальным пакетом с фазой, противоположной фазе предыдущего пакета.

Такая схема называется дифференциальной, поскольку сдвиг фаз выполняется относительно предыдущего переданного бита, а не относительно какого-то эталонного сигнала. При дифференциальном кодировании передаваемая информация представляется не сигнальными посылками, а изменениями между последовательными сигнальными посылками.

Схема DPSK делает излишним строгое согласование фазы местного гетеродина приемника и передатчика. До тех пор пока предыдущая полученная фаза точна, точен и фазовый эталон.

Рисунок 3.2.5 – Дифференциальная фазовая модуляция (DPSK)

Если каждой сигнальной посылкой представить более одного бита, то это позволит эффективнее использовать полосу сигнала. Например, в распространенной кодировке, известной как квадратурная фазовая модуляция (Quadrature phase-shift keying, QPSK), вместо сдвига фазы на 180°, как в кодировке BPSK, используются сдвиги фаз, кратные 90°. Таким образом, каждая сигнальная посылка представляет не один бит, а два.

Описанную схему можно расширить: передавать, например, по три бита в каждый момент времени, используя для этого восемь различных углов сдвига фаз. Более того, при каждом угле можно использовать несколько амплитуд. Такая модуляция называется многоуровневой фазовой модуляцией (Multiple FSK, MFSK).

Квадратурная амплитудная модуляция

Квадратурная амплитудная модуляция (Quadrature amplitude modulation, QAM) является популярным методом аналоговой передачи сигналов, используемым в некоторых беспроводных стандартах.

Данная схема модуляции совмещает в себе амплитудную и фазовую модуляции. В методе QAM использованы преимущества одновременной передачи двух различных сигналов на одной несущей частоте, но при этом задействованы две копии несущей частоты, сдвинутые относительно друг друга на 90°.

При квадратурной амплитудной модуляции обе несущие являются амплитудно-модулированными. Итак, два независимых сигнала одновременно передаются через одну среду. В приемнике эти сигналы демодулируются, а результаты объединяются с целью восстановления исходного двоичного сигнала.

При использовании двухуровневой амплитудной модуляции (2QAM) каждый из двух потоков может находиться в одном из двух состояний, а объединенный поток – в одном из 2·2 = 4 состояний. При использовании четырехуровневой модуляции (т.е. четырех различных уровней амплитуды, 4QAM) объединенный поток будет находиться в одном из 4·4 = 16 состояний. Уже реализованы системы, имеющие 64 или даже 256 состояний. Чем больше число состояний, тем выше скорость передачи данных, возможная при определенной ширине полосы. Разумеется, как указывалось ранее, чем больше число состояний, тем выше потенциальная частота возникновения ошибок вследствие помех или поглощения.

Под каналом передачи данных (КПД) понимается совокупность среды передачи (среды распространения сигнала) и технических средств передачи между канальными интерфейсами. В зависимости от формы информации, которую может передавать канал, различают аналоговые и цифровые каналы.

Аналоговый канал на входе (и, соответственно, на выходе) имеет непрерывный сигнал, те или иные характеристики которого (например, амплитуда или частота) несут передаваемую информацию. Цифровой канал принимает и выдает данные в цифровой (дискретной, импульсной) форме.

Аналоговая модуляция

Поскольку сети связывают цифровые компьютеры, по каналу связи необходимо передавать дискретные данные. Соответственно, при использовании аналоговых сигналов необходимо некоторое преобразование (кодирование) передаваемых данных этими сигналами. Такое преобразование называется аналоговой модуляцией (или аналоговым кодированием). В его основе лежит изменение одной из характеристик синусоидального несущего сигнала в соответствии с последовательностью передаваемых данных. Основные способы аналоговой модуляции: амплитудная, частотная и фазовая. Возможно также использование комбинированных методов, например, сочетания амплитудной и фазовой модуляций.

Читайте также:  Геркулес и овсяные хлопья в чем разница

При амплитудной модуляции изменяется только амплитуда синусоиды несущей частоты, при передаче логической единицы выдается синусоида одной амплитуды, а при передаче логического нуля – другой амплитуды. Этот способ в чистом виде обладает низкой помехоустойчивостью и применяется редко.

При частотной модуляции изменяется только частота несущей – для логической единицы и логического нуля выбираются синусоиды двух различных частот. Этот способ достаточно просто реализуем, и часто применяется при низкоскоростной передаче данных.

При фазовой модуляции логической единице и логическому нулю соответствуют сигналы одинаковой амплитуды и частоты, но отличающиеся по фазе (например, 0 и 180 градусов).

Из комбинированных методов широко используются методы квадратурной амплитудной модуляции (Quadrature Amplitude Modulation, QAM), сочетающие амплитудную модуляцию с 4 уровнями амплитуды и фазовую модуляцию с 8 значениями сдвига фазы. Из 32 возможных комбинаций амплитуды и сдвига фазы для передачи данных в разных модификациях метода используются всего несколько, в то время как все остальные комбинации являются запрещенными, что позволяет улучшить распознавание ошибочных сигналов.

Модемы

Устройства, выполняющие модуляцию и демодуляцию (восстановление из модулированного сигнала исходных данных), называются модемами (Модулятор-демодулятор). Модемы классифицируют по области применения, функциональному назначению, типу используемого канала, поддержке протоколов модуляции, исправления ошибок и сжатия данных, конструктивному исполнению.

По области применения модемы можно разделить на следующие группы:

— для коммутируемых телефонных каналов,

— для выделенных каналов,

— для физических линий:

— короткого радиуса действия (short range или line driver),

— для цифровых систем передачи (CSU/DSU),

— для сотовых систем связи,

— для радиоканалов с пакетной передачей,

— для локальных радиосетей.

Модемы для коммутируемых телефонных каналов предназначены для широкого круга пользователей и наиболее распространены. Такие модемы должны работать в полосе пропускания 3,1 кГц в голосовом диапазоне (поскольку аппаратура АТС не пропустит другие сигналы), уметь взаимодействовать с АТС – набирать номер в импульсном или тоновом режиме, определять сигнал “занято” и т.д.

Модемы для выделенных арендованных каналов отличаются от модемов для коммутируемых линий только в том, что им не требуется взаимодействовать с аппаратурой АТС для установления соединения. Они тоже должны работать в узкой полосе пропускания.

Модемы для физических линий не ограничены узкой полосой пропускания, определенной АТС (при этом действуют другие ограничения полосы, связанные с длиной, экранированностью и другими характеристиками линии). Узкополосные модемы для физических линий используют методы модуляции, аналогичные применяемым в модемах для коммутируемых линий, но за счет более широкой полосы пропускания, могут достигать более высоких скоростей передачи – 128 Кбит/с и выше.

Модемы короткого радиуса действия используют уже не аналоговую модуляцию, а цифровые сигналы. Часто используются разнообразные методы цифрового кодирования, исключающие постоянную составляющую из сигнала.

Модемы для цифровых систем передачи обеспечивают подключение к стандартным цифровым каналам (T1/E1, ISDN) и поддерживают функции канальных интерфейсов.

Модемы для сотовых систем связи обычно поддерживают специальные протоколы модуляции и коррекции ошибок, позволяющие работать при часто изменяющихся параметрах среды передачи и высоком уровне помех.

Модемы для радиоканалов с пакетной передачей используют одну и ту же полосу частот, в которой организуется множественный доступ, например, с контролем несущей. Достигаемая при этом скорость передачи обычно невысока – до 64 Кбит/с, но расстояние между станциями может составлять несколько километров.

Модемы для локальных радиосетей обеспечивают передачу данных с высокой скоростью (до 16 Мбит/с) на небольшие расстояния (до 300 м). Для предотвращения взаимного влияния нескольких одновременно передающих модемов используются различные способы, например, псевдослучайной перестройки рабочей частоты или широкополосной передачи.

По методу передачи модемы обычно делят на синхронные и асинхронные. Поскольку модем связан, с одной стороны, с компьютером, а с другой стороны – через канал – с другим модемом, возможен асинхронно-синхронный режим работы: модем получает данные от компьютера асинхронно, а передает их другому модему в синхронном режиме.

Комментировать
118 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector