No Image

At2005b схема блока питания переделка

СОДЕРЖАНИЕ
7 251 просмотров
12 декабря 2019

Переделал Блок Питания от компьютера, максимальная мощность 650ват, диапазон регулировки напряжения от 2.5-25 вольт сила тока до 25 ампер на видео показан тест моего источника питания, так же таким БП можно заряжать аккумуляторы любого типа, питать автомагнитолы, усилители и радиостанции.

вот на заметку самодельщику по переделке БП, думаю будет полезным

faq по переделке

at2005b резистор на 2й ноге который идет на 12 вольт. впаял вместо него переменник на 50кОм. Регулирует напряжение на 12в шине в диапазоне 7.5-13.6 в под нагрузкой.
Видимо, чтобы еще поднять напругу, нужен переменник на сотню кОм.

sg6105dz www.overcloc…11/22/pic3.png 
Поставил переменник VR3 тк его у меня изначально не было. и получил банально маленькую регулировку 10.7-13.4в, а потом защита.

UC3845B + WT751002S (WT7525) схема бп аналог www.oka-nsk.r…c9aac&mode=view 
datasheet4u.c…rend.pdf.ht…sheet4u.c…ductor.pdf.html
решение: Выпаиваем супервизор WT751002S, замыкаем 2-3 контакты где был супервизор — блок включается. убираем резисторы r44, r61, r19, вместо них паяем переменный эквивалент(я припаял 6.8кОм) регулирует 7-19 вольт!

UC3845B + tps3510p lib.chipdip.r…OC000204599.pdf тоже замыкаем 2-3 ногу и см выше , такая связкка есть в бп hec 400ar-ptf

us3843b и DWA101N N141 и тоже замыкаем 2-3 ногу и см выше, видимо аналог WT7525, такая связка есть в бп delta gps-350bp- 100

tl494 (SP494,KA7500B) + lm339(lm393)
выпаиваем лм339, с 1й ноги 494 отцепляем резюк в 5в, с 1й резюк в 12в меняем на 3ком, ставим переменник с 1й ноги в землю 1ком, с 4й ноги отрезаем все кроме резистора в землю.
на этом этапе регулировка +6- +27в.

далее делаем мост: выпаиваем полумосты с 5в и 3.3в выпаиваем дгс — ставим на его место перемычки, вычищем все с 5в участка платы, ставим на этот участок отрицательный полумост от 12в положительного полумоста, ставим конденсаторы правильно тк теперь относительно минуса земля получается положительной все, по итогу получаем регулировку до 53в! или можно перемотать транс, но пока сам не сделал…

cm6800g / ps223 (229)

1) закоротить 2-3 ногу ps223 (229) — блок включится без защит с любым выходным напряжением.
2) с 6й ноги cm6800g находим оптопару, с нее тл431 (одна нога в оптопару, вторая в землю, управляющая через резюки в землю и 5 -12в)
3) с этой управляющей ноги резюк 50ком в землю имеем 12,9-21в если с этой ноги с 12в 50 ком то 8.5-12в

Posted on 23.05.2017 // 0 Comments

Совсем недавно мы публиковали материалы по переделке компьютерного блока в зарядное на ШИМ АТ2005В. Тем читателям, кто в своем блоке столкнулся с ШИМ АТ2005А важно учесть несколько нюансов, о которых речь пойдет ниже.

Переделка БП на ШИМ AT2005A в зарядное устройство

Для переделки блока на основе ШИМ АТ2005А можно применять материалы со статьи о переделке блока на основе ШИМ АТ2005В, но с небольшой корректировкой. Дело в том, что микросхемы АТ2005А и АТ2005В не взаимозаменяемые, и основное их отличие в распиновке.

Как видим, назначение выводов у АТ2005А сдвинуты на две ножки. Это влечет за собой небольшую корректировку в подключении платы, с помощью которой происходит обман супервизора.

Также схема блока питания на ШИМ АТ2005А уже приобретает следующий вид.

Корректировка выходного напряжения у АТ2005А происходит с помощью резисторов на 16 ножке, а не по второй, как у АТ2005В.

П.С. По некоторым данным аналогом АТ2005А является WT7520 и WT7514, который часто встречается блоках питания Linkworld. Если переделка блока на основе ШИМ WT7514 по этим материалам прошла успешно, просим отписаться в комментах, они всегда открыты.

Микросхема AT 2005 B разработана фирмой ATE и предназначена для применения в системных блоках питания класса ATX в качестве управляющей микросхемы ШИМ. Микросхема разработана для применения в двухтактных импульсных преобразователях. Она одновременно выполняет функции супервизора напряжений, регулятора напряжений, а также выполняет функции формирования сигнала PG (PW-OK) и функции удаленного управления. Регулировка и стабилизация выходных напряжений осуществляется по методом широтно-импульсной модуляции (ШИМ). Микросхемой обеспечивается выполнение следующих функций:

Читайте также:  Голубцы с морковью и чесноком на зиму

формирование сигналов управления мощными тран­зисторами двухтактного преобразователя;

— изменение ширины этих управляющих импульсов при изменении величины выходных напряжений;

— контроль положи­тельных напряжений, формируемых блоком питания (+3.3 V , +5 V и +12 V );

— защита от превы­шения положитель­ных выходных напря­жений;

— защита от сниже­ния положительных выходных напряже­ний;

— защита от снижения напряжения в каналах отри­цательных напряжений (-5 V и -12 V );

— формирование сигнала Power Good ( PG );

— управление запуском и выключением блока питания в соответствии с сигналом PSJ 3 N .

Данный ШИМ-контроллер выпускается фирмой ATE в 16-контактном DIP-корпусе, распределение сигналов микросхемы представлено на рис. 1 , назначение сигналов микросхемы приведено в табл.2.

На рис. 2 представлена функциональная блок-схема микросхемы.

Рис. 1 Рис. 2. Функциональная блок-схема микросхемы ШИМ контроллера AT2005B

Таблица 1. Назначение контактов микросхемы AT2005B

Номер контакта Сигнал Тип Описание
1 OPNEIN аналоговый вход Вход компенсации инвертирующего входа усилителя ошибки по напряжению
2 VADJ аналоговый вход Не инвертирующий вход внутреннего усилителя ошибки. Чаще всего, на контакт IN подается напряжение обратной связи с выходных каналов +5В и +12В. Увеличение напряжения на контакте IN приводит к уменьшению длительности импульсов на контактах С1 и С2.
3 V3.3 аналоговый вход Контакт контроля выходного напряжения +З.ЗВ. Через этот контакт осуществляется контроль напряжения в канале +З.ЗВ, а также осуществляется защита от превышения, и защита от снижения напряжения в этом канале.
4 V5 аналоговый вход Контакт контроля выходного напряжения +5В. Через этот контакт осуществляется контроль напряжения в канале +5В, а также осуществляется защита от превышения, и защита от снижения напряжения в этом канале.
5 V12 аналоговый вход Контакт контроля выходного напряжения +12В. Через этот контакт осуществляется контроль напряжения в канале +12В, а также осуществляется защита от превышения и защита от снижения напряжения в этом канале.
6 PT аналоговый вход Вход сигнала внешней блокировки от превышения напряжения. Может использоваться для защиты от КЗ с отрицательных каналах.
7 GND общий Контакт для подключения к «земле».
8 CT Вывод подключения внешнего частотозадающего конденсатора.
9-10 C1-С2 аналоговые выходы Выходы, на которых формируются ШИМ импульсы, управляющие силовыми транзисторами блока питания.
11 REM аналоговый вход Сигнал включения/выключения микросхемы. Этот сигнал формируется системной платой и позволяет управлять работой блока питания. Микросхема запускается и работает при низком уровне сигнала PSON. При установке же сигнала PSON в высокий уровень, микросхема выключается, и ШИМ импульсы не ее выходе пропадают.
12 TPG аналоговый вход Контакт для подключения времязадающего конденсатора для схемы формирования сигналаPowerGood. Типовой вариант – 2.2mF.
13 PG логический выход Сигнал «питание в норме» — PowerGood, который своим «высоким» уровнем (логическая «1 »)показывает, что все выходные напряжения блока питания находятся в заданном диапазоне значений. Сигнал PG устанавливается в высокий уровень с временной задержкой 250-300 мс после того, как все напряжения достигнут заданных значений. Контакт является выходом с открытым коллектором.
14 DET логический вход Внешний вход для блокировки формирования сигнала PG/
15 VCC питание Напряжение питания микросхемы 5.5 В. На этот контакт подается напряжение дежурного питания +5V_SB.
16 OPOUT аналоговый выход Выход внутреннего усилителя ошибки. Вывод подключения внешней компенсирующей RC-цепи операционного усилителя обратной связи.

Таблица 2. Предельные значения основных параметров и условий функционирования микросхемы

Параметр Обозначение Значение Единица измерения
Напряжение питания (конт.15) VCC 5.5 В
Напряжение на выходах регуляторов СI и С2 (конт.9 и конт.10) Vcc1, Vcc2 5.5 В
Выходной ток сигналов С1 и С2 (конт. 9 и конт.10) Icc1, Icc2 200 мА
Рассеиваемая мощность Pd 200 mВт
Температура при хранении Tstg от-65 до+150 °С
Рабочая температура кристалла Topr -10-(+70) °С

Таблица 3. Основные электрические характеристики микросхемы AT2005B

Параметр Обозна-чение Значение Еиница измерения
мин типовое макс
Общий ток потребления Icc 10 20 мА
Рабочая частота приCT=2200P Fosc 50 60 КГц
Порог срабатывания защиты от превышения в канале +3.3V V33 3.8 4.1 4.3 В
Порог срабатывания защиты от превышения в канале +5V V5 5.8 6.2 6.6 В
Порог срабатывания защиты от превышения в канале +12V (на выводе микросхемы) V12 4,41 4.64 4.90 В
Порог срабатывания защиты от перегрузки в канале +3.3V V33 1.78 1.98 2.18 В
Порог срабатывания защиты от перегрузки в канале +5V V5 2.7 3.0 3.3 В
Порог срабатывания защиты от перегрузки в канале +12V V12 2.11 2.37 2.63 В
Порог срабатывания защиты от перегрузки отрицательных каналов PT 0.55 0.62 0.68 В
Временная задержка установки сигнала PG в высокий уровень Td.pg 100 250 500 мс

Микросхема AT2005 имеет встроенный тактовый генератор работающий на частоте определяемой номиналом конденсатора подключенного к выводу RT, особенностью данной микросхемы по отношения к другим микросхемам ШИМ-контроллеров этого класса, является отсутствие внешнего частотозадающего резистора, он интегрирован в состав микросхемы. Частота, сформированная генератором, делится пополам с помощью внутреннего триггера. В результате такого деления, импульсы на выходах С1 и С2 следуют с частотой, равной половине частоте генератора с сдвинуты по фазе на половину периода (см. рис. 3).

Читайте также:  Если саженцы куплены зимой

Стабилизация выходных напряжений бло­ка питания осуществляется методом широтно-импульсной модуляции, т.е. изменением длительности импульсов на контактах C1 и C2. Длительность импульсов определяется ШИМ-компаратором, на один из входов которого (вход «-“) подается пилооб­разное напряжение с генератора, а на второй вход (вход «+») подается линейное напряжение с усилителя ошибки.

Выходное напряжение усилителя ошибки является разницей опорного напряжения 2.45В и напряжения, подаваемого с контакта 2 (сигнал VADJ ). Сигнал VADJ является, как правило, суммарным напря­жением каналов +5В и +12В, и изменение именно этих напряжений отслеживается ШИМ-компаратором .

Микросхема имеет встроенную схему формирования сигнала Power Good — PG (питание в норме). Сигнал PG устанавливается в высокий уровень на конт.13 в среднем через 250-300 мс после того, как напряжения +5В, +З.ЗВ и +12В достигнут номинальных значений, а также при условии, что переменное напряжение сети также находится в допустимом диапазоне значений. Состояние сигнала PG определяется внутренним транзистором с открытым коллектором, подключенным к конт.13.

Защита от перенапряжения и короткого замыкания в микросхеме реализована на специализированном триггере защиты. Уровни выходных напряжений +5В, +З.ЗВ и +12В контролируются внутренними компараторами микросхемы, на которые подаются контролируемые уровни напряжений выходных шин и сравниваются с опорным напряжением 1.25В. В случае срабатывания любой из защит сигналы от компараторов через логические схемы поступают на триггер защиты, сигналом с которого осуществляется блокировка выходного каскада микросхемы.

Рис.4. Временные соотношения сигналов

AT2005B имеет встроенную схему удаленного управления блоком питания. Этой схемой контролируется состояние сигнала REM, формируемого системной платой персонального компьютера. Сигнал REM подается на конт. 11 микросхемы который смещен на величину напряжения +5B через внешний резистор. Принудительная установка сигнала REM в логический «0» с помощью внешних цепей, приводит к запуску микросхемы. В таблице 2 и таблице 3 даны основные электрические характеристики микросхемы.

Диагностирование микросхемы AT2005B

Диагностика данной микросхемы мало чем отличается от классического варианта диагностирования любого ШИМ контроллера. В общем случае диагностирование можно разделить на несколько этапов.

На первом этапе как водится необходимо сделать полный визуальный контроль состояния микросхемы. Особо стоит обратить внимание на корпус микросхемы, нередки случаи когда выход из строя микросхемы сопровождается разрушением ее корпуса, изменением цвета корпуса и печатной платы в том месте где расположена микросхема. Далее в процессе диагностики необходимо с помощью обычного тестера прозвонить все силовые выводы, и управляющие выводы микросхемы на короткое замыкание, к таковым можно отнести:

— контакты через которые осуществляется питание микросхемы;

— контакты по которым осуществляется контроль выходных напряжений блока питания (+3.3V, +5Vи +12V);

— контакты на которых формируются выходные управляющие выводы для силового каскада.

Наличие малых сопротивлений (единицы и десятки Ом) между указанными контактами и общим контактом (GND), указывает на необходимость замены микросхемы или более детальному ее диагностированию и обследовании сопутствующих цепей ее обвязки. Стоит отметить, что возникновение пробоев по указанным контактам, как правило, приводит к большим токам через микросхему, что является причиной срабатывания цепей защиты в первичных силовых цепях инвертора и дополнительного дежурного источника питания, а в случае их не срабатывания к сильному разогреву , разрушению или потемнению корпуса микросхемы.

Читайте также:  Замена водопроводных труб на полипропиленовые трубы цена

Следующие этапы диагностики подразумевают измерение сигналов на выводах микросхемы. Для этого потребуется лабораторный источник питания, тестер, осциллограф. От внешнего источника питания на микросхему, а именно вывод питания, необходимо подать напряжение питания +5 Вольт. При этом в момент включения необходимо проконтролировать появление пилообразного напряжения питания на выводе подключения частотозадающего конденсатора (конт.8). Далее можно проверить исправность выходного каскада микросхемы, для этого необходимо с имитировать наличие сигнала удаленного включения PSON, для этого необходимо соединить вывод 11 микросхемы с общим проводником (GND). Одновременно нужно проконтролировать кратковременное появление управляющих прямоугольных сигналов на выводах 9 и 10. Продолжительность появления сигналов составляет на время не более одной секунды , далее импульсы исчезают по причине срабатывания блокировки от КЗ в выходных шинах (+З.ЗВ, +5В, +12В), т.к. выходных напряжений как таковых нет.

Заключительный этап диагностики микросхемы подразумевает проверку всех практически всех ее функциональных блоков. Для этого необходимо от внешних источников питания на выходе блока питания с имитировать выходные напряжения, естественно саму микросхему выпаивать из схемы не надо. Необходимо учесть, что некоторые блоки питания в своем составе в канале формирования дежурного питания, а следовательно и питания микросхемы содержат интегральный стабилизатор напряжения +5В (7805). В этом случае питание микросхемы нужно обеспечить от внешних источников постоянного тока, или имитировать шину +5VSTB путем подачи напряжения до стабилизатора напряжения. Все остальные выходные шины имитируются простой подачей необходимых напряжений на выходные шины блока питания. Для упрощения и уменьшения необходимого стендового оборудования, можно все необходимые напряжения получить с заведомо исправного блока питания стандарта ATX. Далее точно также как и в предыдущем случае контакт микросхемы PSON вывод 11, соединяем с общим проводником (GND), т. е. разрешаем запуск микросхемы. Если все подключения сделаны правильно микросхема AT2005B должна запустится. Работоспособность микросхемы проверяется наличием пилообразного напряжения на выводе 8 (Ст) и управляющих прямоугольных импульсов на ее выводах 9 и 10 которые также можно наблюдать в первичной обмотке согласующего трансформатора.

Цепи обратной связи проверяются наличием напряжения на входе 2 (VADJ) и 16 (OPOUT). Отсутствие КЗ и обрыва в выходных шинах проверяется наличием напряжений на входах микросхемы 3(V3.3),4( V5),5( V12). Если управляющих импульсов на выходе микросхемы нет, то это свидетельствует о блокировке микросхемы (например через вывод 6 (PT) или неисправности самой микросхемы. Если же отсутствует также пилообразное напряжение на выводе 8 микросхемы, то это свидетельствует об отсутствии должного напряжения на микросхеме или ее неисправности.

И так подведя итог статьи можно сделать следующие выводы:

— для проверки микросхемы из диагностического оборудования необходимы тестер, осциллограф, внешние источники постоянного тока или работоспособный системный блок питания;

— проверка микросхемы практически не отличается от проверок микросхем ШИМ контроллеров аналогичного класса применяемых в системных источниках питания.

— методики поверки микросхемы должны применяться с учетом конкретных схемотехнических решений блоков питания в цепях питания микросхемы и цепях обратной связи;

— применяя данную проверку также можно проверит и согласующий каскад блока питания, для этого необходимо по возможности отключить или выпаять силовые ключи блока питания и поверить наличие управляющих импульсов в первичной и вторичной обмотках согласующего трансформатора;

— по результатам данных проверок можно сделать вывод о работоспособности не только управляющей микросхемы, но оценить работу вторичных выпрямителей и согласующего каскада.

Комментировать
7 251 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector