No Image

Гармоники в электрических сетях что это

СОДЕРЖАНИЕ
157 просмотров
12 декабря 2019

Определение гармоник

График сигнала, который изменяется по синусоидальному закону, имеет вид:

Но это значительно отличается от реальной формы напряжения в электрической сети:

Эти зазубрины и всплески и вызваны гармониками. Мы попытаемся рассказать об этом явлении простыми словами. Изображенный выше график можно представить как сумму сигналов различной частоты и величины. Если всё это сложить, то в результате получится именно такой сигнал. Пример и результат сложения сигналов изображен на графике ниже:

Гармоники различают по номерам, где первая гармоника — это та составляющая, у которой самая большая величина. Однако такое описание слишком кратко. Поэтому давайте приведем формулу определения величины гармоники. Это возможно при гармоническом анализе и разложении в ряд Фурье:

Из этой формулы можно выделить и величины частот и фаз гармонических составляющих электрической сети и любого другого синусоидального сигнала.

Источники помех

К источникам помех можно отнести целый ряд оборудования, начиная от бытовых приборов, заканчивая мощными промышленными электрическими машинами. Для начала давайте кратко рассмотрим причины их возникновения.

Гармоники в электрической сети переменного тока возникают из-за особенностей электрооборудования, например из-за нелинейности их характеристик, или характера потребления тока.

Например, в трёхфазных сетях в магнитопроводах трансформаторов длины магнитных путей средних и крайних фаз различаются почти в 2 раза, поэтому и токи их намагничивания различаются до полутора раз. Отсюда возникают гармоники в трёхфазных сетях.

Другой источник помех в электротехнике — это электродвигатели, как трёхфазные синхронные и асинхронные, так и однофазные, в том числе и универсальные коллекторные двигатели. Последний тип двигателей используется в большей части бытовой техники, например:

  • стиральные машины;
  • кухонные комбайны;
  • дрели, болгарки, перфораторы и пр.

В результате работы импульсных блоков питания возникают высокочастотные гармоники (помехи) в электрической сети. Чтобы понять как они образуются, нужно иметь сведения об их внутреннем устройстве. Это связано с тем, что ток первичной обмотки ИБП отличается от непрерывного, он протекает только тогда, когда открыт силовой полупроводниковый ключ. А последний открывается и закрывается с частотой выше 20 кГц.

Интересно: Рабочая частота некоторых современных импульсных блоков питания достигает 150 кГц.

Для уменьшения этих гармоник используют фильтры электромагнитных помех, например, синфазный дроссель и конденсаторы. Для улучшения графика потребления тока относительно питающего однофазного напряжения используют активные корректоры коэффициента мощности (рус. ККМ, англ. PFC).

Такие блоки питания установлены в:

  • светодиодных лампах;
  • ЭПРА для люминесцентных ламп;
  • компьютерные блоки питания;
  • современные зарядные устройства для мобильных телефонов;
  • телевизоры и прочая техника.

Также к этим источникам питания можно отнести и преобразователи частоты.

Последствия гармонических помех

Наличие гармоник в электрической сети переменного тока вызывает определенные проблемы. Среди них – повышенный нагрев электродвигателей и питающих проводов. Последствия влияния гармоник – это вибрация двигателей. Дальнейшие последствия могут быть различными – начиная от ускоренного износа подшипников ротора двигателя, заканчивая пробоем на корпус обмоток от повышенного нагрева.

В электрике встречаются ложные срабатывания коммутационной и защитной аппаратуры – автоматических выключателей, контакторов и магнитных пускателей. В звуковой аппаратуре и технике для связи из-за гармоник возникают помехи. С ними борются аналогично – установкой фильтров электромагнитных помех.

На видео ниже рассказывается, что такое гармоники и интергармоники в электросети:

В заключение хотелось бы отметить, что гармоники в электрических сетях в принципе не несут никакой пользы. Они лишь вызывают неисправности, ложные срабатывания коммутационной аппаратуры и прочие проявления нестабильности в работе. Это может нести не только неудобства в эксплуатации, но и экономические проблемы, убытки и аварийные ситуации, которые могут быть опасны для жизни.

Материалы по теме:

Гармонические колебания – искажения синусоидальной формы напряжения и тока. Эти явления возникают в сетях переменного тока при переходных процессах, подключении нелинейной нагрузки. Появление гармоник вызывают:

  • Мощные промышленные выпрямители.
  • Индукционные и дуговые плавильные печи.
  • Люминесцентные и газоразрядные лампы.
  • Трансформаторы.
  • Оборудование для электросварки.
  • Источники бесперебойного электропитания.
  • Электродвигатели.
  • Микроволновые печи и другая бытовая техника.
  • Преобразователи частоты.

В процессе работы этого оборудования возникает паразитная ЭДС, которая накладывается на синусоидальный сигнал. В результате появляются провалы, скачки и другие искажения.

Влияние гармоник на электрооборудование

Гармонические колебания в сети оказывают негативное влияние на работу электрооборудования. К ним относятся:

  • Асимметрия в трехфазных сетях при возникновении искажений на одной или двух фазах. Это вызывает ненормальные режимы работы двигателей, другой электротехники.
  • Ложное срабатывание защиты. На гармоники реагируют автоматические выключатели, релейные схемы защиты, отключающие напряжение в распределительной сети.
  • Избыточный нагрев обмоток электрических машин, трансформаторов, проводов.
  • Увеличение уровня шума в слаботочных сетях. Про частом переходе синусоиды через ноль в соседних контрольных кабелях возникают наводки, искажающие сигнал.
  • Увеличение тока нейтрали. Гармонические искажения вызывают падение напряжения в нейтральном и фазных проводах, нагреву нулевого проводника.
Читайте также:  Домик из гипса своими руками пошагово

Последствия влияния гармоник

Искажения формы переменного тока и напряжения снижают срок службы изоляции, конденсаторов, качество напряжения в сети, увеличиваиют погрешности средств измерений. Это приводит:

  • К уменьшению межремонтных промежутков электрооборудования и увеличению эксплуатационных затрат.
  • К частым остановкам технологического оборудования. В результате ложного срабатывания схем защиты прерываются производственные процессы.
  • К авариям электроустановок. В результате падений напряжения и избыточного нагрева возникает пробой изоляции и короткие замыкания.

Высшие гармоники вызывают значительные экономические убытки.

Способы защиты от высших гармоник для частотных преобразователей

Преобразователи частоты содержат инверторы и ШИМ-модуляторы, которые являются источниками искажения напряжения в сети. Это отрицательно сказывается как на работе электродвигателей, так и на качестве электроэнергии в сети. Для защиты от этого явления используют различные фильтры.

Эти устройства устанавливают во входной и выходной цепях преобразователей частоты. Для защиты от искажений формы напряжения и тока применяют:

  • Сетевые дроссели. Эти устройства защищают от импульсных перепадов напряжения, несимметричной нагрузке, продлевают срок службы конденсаторов звена постоянного тока.
  • Электромагнитные фильтры. Устанавливаются во входной силовой цепи преобразователя. Защищают сеть от гармоник, генерируемых инвертором ПЧ.
  • Синусные и dU/dt фильтры. Эти устройства устанавливают в частотно-регулируемом приводе с возможностью рекупации электроэнергии, в цепях электрических машин с частыми пусками, отключениями и реверсами, при использовании для подключения неэкранирумых кабелей.

При выборе фильтра необходимо убедиться, что конкретная модель преобразователя частоты совместима с типом защитного устройства. Эта информация указана в технической документации ПЧ. Компания «Данфосс» выпускает несколько линеек частотных преобразователей со встроенными фильтрами высших гармоник. Это избавляет от необходимости рассчитывать характеристики устройств и расходов на покупку дополнительного оборудования.

FAQ по гармоникам

Что такое гармоники?

Гармоники – это синусоидальные волны суммирующиеся с фундаментальной. Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.

Основной частотой 50 Гц(т.е. 1-я гармоника = 50 Гц 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.

Когда возникают гармоники?

Гармонические искажения возникают при работе нелинейных потребителей тока (в том числе частотных преобразователей).

Какие гармоники не появляются от работы ПЧ?

При работе от преобразователя частоты не появляются четные гармоники.

Чем опасны гармоники по току?

Гармонические искажения тока вызывают перегрев силового трансформатора, повышенное потребление реактивной мощности, увеличение потерь в меди силовых проводов и трансформатора. Они являются причиной появления гармоник по напряжению.

Чем опасны гармоники по напряжению?

Наличие гармонических искажений по напряжению приводят к выходу из строя оборудования.

Как бороться с гармониками?

Гармонические искажения можно уменьшать при помощи входных фильтров. Например, в серии VLT HVAC Basic FC 101 имеется встроенный фильтр гармоник на звене постоянного тока.

В данной статье мы рассмотрим что такое гармоники, фундаментальную частоту и сложные формы волны из-за гармоник, в конце статьи подведем краткие итоги по этой теме.

Что такое гармоники

Гармоники — это нежелательные более высокие частоты, которые накладываются на основную форму волны, создавая искаженную волновую картину.

В цепи переменного тока сопротивление ведет себя точно так же, как в цепи постоянного тока. То есть ток, протекающий через сопротивление, пропорционален напряжению на нем. Это связано с тем, что резистор является линейным устройством, и если приложенное к нему напряжение представляет собой синусоидальную волну, ток, протекающий через него, также является синусоидальной, поэтому разность фаз между двумя синусоидами равна нулю.

Читайте также:  Делаем печку своими руками

Как правило, при работе с переменными напряжениями и токами в электрических цепях предполагается, что они имеют чистую и синусоидальную форму с присутствием только одного значения частоты, называемого «основной частотой», но это не всегда так.

В электрическом или электронном устройстве или цепи, которая имеет вольт-амперную характеристику, которая не является линейной, то есть ток, протекающий через нее, не пропорционален приложенному напряжению. Чередующиеся сигналы, связанные с устройством, будут отличаться в большей или меньшей степени от сигналов идеальной синусоидальной формы. Эти типы сигналов обычно называют несинусоидальными или сложными сигналами.

Сложные сигналы генерируются обычными электрическими устройствами, такими как индукторы с железной сердцевиной, переключающие трансформаторы, электронные балласты в люминесцентных лампах и другие такие сильно индуктивные нагрузки, а также формы выходного напряжения и тока генераторов переменного тока, генераторов и других подобных электрических машин. В результате форма волны тока не может быть синусоидальной, даже если форма волны напряжения есть.

Также большинство электронных схем переключения источников питания, таких как выпрямители, кремниевые выпрямители (SCR), силовые транзисторы, преобразователи питания и другие подобные твердотельные переключатели, которые отключают и измельчают источники питания синусоидальной формы волны для управления мощностью двигателя или преобразования синусоидального источника переменного тока в постоянный. Эти переключающие схемы имеют тенденцию потреблять ток только при пиковых значениях источника переменного тока, и, поскольку форма сигнала переключающего тока не является синусоидальной, результирующий ток нагрузки, как говорят, содержит гармоники.

Несинусоидальные сложные формы волны создаются путем «сложения» серии синусоидальных частот, известных как «гармоники». Гармоники — это обобщенный термин, используемый для описания искажения синусоидальной формы волны сигналами разных частот.

Тогда независимо от формы сложную форму волны можно математически разделить на отдельные компоненты, называемые основной частотой и рядом «гармонических частот». Но что мы понимаем под «фундаментальной частотой»?

Фундаментальная частота

Фундаментальные формы волны (или первая гармоника) является синусоидальным сигналом , который имеет частоту питания. Фундаментальным является самой низкой или базовой частотой, ƒ , на которой построен комплекс формы сигнала и в качестве такового периодического времени, Τ результирующего комплексного сигнала будет равен периоду основной частоты.

Давайте рассмотрим основной сигнал переменного тока первой гармоники, как показано на рисунке.

Мы можем видеть, что синусоидальная форма волны представляет собой переменное напряжение (или ток), которое изменяется как синусоидальная функция угла, 2πƒ . Частоты формы волны, ƒ определяется числом циклов в секунду. В Соединенном Королевстве эта основная частота установлена ​​на 50 Гц, тогда как в Соединенных Штатах она составляет 60 Гц.

Гармоники — это напряжения или токи, которые работают на частоте, которая является целым (целым числом) кратным основной частоте. Таким образом, для основной формы волны 50 Гц это означает, что частота 2-й гармоники будет 100 Гц (2 x 50 Гц), 3-й гармоники будет 150 Гц (3 x 50 Гц), 5-й = 250 Гц, 7-й = 350 Гц и так далее. Аналогичным образом, с учетом основной формы волны 60 Гц частоты 2-й, 3-й, 4-й и 5-й гармоник будут равны 120 Гц, 180 Гц, 240 Гц и 300 Гц соответственно.

Другими словами, мы можем сказать, что «гармоники» являются кратными основной частоты и поэтому могут быть выражены как: 2ƒ , 3ƒ , 4ƒ и т.д.

Сложные формы волны

Обратите внимание, что красные формы волны, приведенные выше, являются фактическими формами сигналов, видимыми нагрузкой, из-за гармонического содержания, добавляемого к основной частоте.

Основной сигнал также можно назвать сигналом 1 й гармоники. Поэтому вторая гармоника имеет частоту, в два раза превышающую частоту основной, третья гармоника имеет частоту, в три раза превышающую основную, а четвертая гармоника имеет частоту, в четыре раза превышающую основную, как показано в левом столбце.

Правый столбец показывает сложную форму волны, сгенерированную в результате эффекта между добавлением основной формы волны и форм гармонических колебаний на разных частотах гармоник. Обратите внимание, что форма результирующего сложного сигнала будет зависеть не только от количества и амплитуды присутствующих частот гармоник, но также и от соотношения фаз между основной или базовой частотой и отдельными частотами гармоник.

Мы можем видеть, что сложная волна состоит из основной формы волны плюс гармоники, каждая из которых имеет свое пиковое значение и фазовый угол. Например, если основная частота задана как: E = V MAX (2πƒt) или V MAX (ωt) , значения гармоник будут заданы:

Читайте также:  Завтрак в постель картинки

Для второй гармоники:

Е 2 = V 2max (2 * 2πƒt) = V 2max (4πƒt) = V 2max (2ωt)

Для третьей гармоники:

E 3 = V 3max (3 * 2πƒt) = V 3max (6πƒt), = V 3max (3ωt)

Для четвертой гармоники:

E 4 = V 4max (4 * 2πƒt) = V 4max (8πƒt), = V 4max (4ωt)

Тогда уравнение, данное для значения сложной формы волны, будет иметь вид:

Гармоники обычно классифицируются по их названию и частоте, например, 2- й гармонике основной частоты при 100 Гц, а также по их последовательности. Гармоническая последовательность относится к векторному вращению гармонических напряжений и токов по отношению к основной форме волны в сбалансированной 3-фазной 4-проводной системе.

Гармоника прямой последовательности (4-й, 7-й, 10-й,…) будет вращаться в том же направлении (вперед), что и основная частота. Тогда как гармоника обратной последовательности (2-й, 5-й, 8-й,…) вращается в противоположном направлении (обратном направлении) основной частоты.

Как правило, гармоники прямой последовательности нежелательны, поскольку они ответственны за перегрев проводников, линий электропередач и трансформаторов из-за добавления сигналов.

С другой стороны, гармоники обратной последовательности циркулируют между фазами, создавая дополнительные проблемы с двигателями, поскольку противоположное вращение вектора ослабляет вращательное магнитное поле, необходимое для двигателей, и особенно асинхронных двигателей, заставляя их создавать меньший механический крутящий момент.

Другой набор специальных гармоник, называемых «тройками» (кратными трем), имеют нулевую последовательность вращения. Тройки — это кратные третьей гармоники (3-й, 6-й, 9-й, …) и т.д., отсюда и их название, и поэтому они смещены на ноль градусов. Гармоники нулевой последовательности циркулируют между фазой и нейтралью или землей.

В отличие от гармонических токов прямой и обратной последовательностей, которые взаимно компенсируют друг друга, гармоники третьего порядка не компенсируются. Вместо этого сложите арифметически в общем нейтральном проводе, который подвергается воздействию токов всех трех фаз.

В результате амплитуда тока в нейтральном проводе из-за этих тройных гармоник может быть в 3 раза больше амплитуды фазового тока на основной частоте, что делает его менее эффективным и перегретым.

Затем мы можем суммировать эффекты последовательности, кратные основной частоте 50 Гц:

Название Основная Вторая Третья Четвертая Пятая Шестая Седьмая Восьмая Девятая
Частота, Гц 50 100 150 200 250 300 350 400 450
Последовательность + + +

Обратите внимание, что та же самая гармоническая последовательность также применяется к основным сигналам 60 Гц.

Последовательность Вращение Гармонический эффект
+ Вперед Чрезмерный эффект нагрева
Обратный ход Проблемы с крутящим моментом двигателя
Нет Добавляет напряжения и / или токи в нейтральный провод, вызывая нагрев

Резюме по гармоникам

Гармоники — это высокочастотные сигналы, накладываемые на основную частоту, то есть частоту цепи, и которые достаточны для искажения формы волны. Величина искажения, применяемого к основной волне, будет полностью зависеть от типа, количества и формы присутствующих гармоник.

Гармоники были в достаточном количестве только в течение последних нескольких десятилетий с момента появления электронных приводов для двигателей, вентиляторов и насосов, цепей переключения электропитания, таких как выпрямители, преобразователи питания и тиристорные регуляторы мощности, а также большинства нелинейных электронных фаз с управлением нагрузки и высокочастотные (энергосберегающие) люминесцентные лампы. Это связано, главным образом, с тем фактом, что управляемый ток, потребляемый нагрузкой, не точно соответствует синусоидальным сигналам питания, как в случае выпрямителей или силовых полупроводниковых коммутационных цепей.

Гармоники в системе распределения электроэнергии в сочетании с источником основной частоты (50 Гц или 60 Гц) создают искажения формы сигналов напряжения и / или тока. Это искажения создают сложную форму волны, состоящую из ряда частот гармоник, которые могут оказать неблагоприятное воздействие на электрооборудование и линии электропередач.

Величина искажения формы волны, придающая сложной форме ее характерную форму, напрямую связана с частотами и величинами наиболее доминирующих гармонических компонентов, частота гармоник которых кратна (целым числам) основной частоты. Наиболее доминирующими гармоническими составляющими являются гармоники низкого порядка со 2- го по 19- е, причем тройки являются наихудшими.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Комментировать
157 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector