No Image

Виды коррозионных разрушений металлов

СОДЕРЖАНИЕ
77 просмотров
12 декабря 2019

Коррозия в зависимости от характера коррозионных разрушений делится на сплошную и местную.

Сплошная коррозия– появляется при отсутствии защитных пленок на

поверхности металла или при равномерном распределении анодных и катодных участков. Потеря прочности образца пропорциональна потере массы и поэтому этот вид коррозии менее опасный.

Местная коррозия– имеет несколько разновидностей: пятнистая, язвенная, подповерхностная, межкристаллитная.

Пятнистая коррозия– отмечается большая площадь очагов и их малая глубина. По характеру разрушений близка к сплошной коррозии.

Язвенная коррозия– отмечается значительная глубина разрушений,

которая превышает их протяженность (питтинговая коррозия).

Точечная коррозия– наблюдаются глубокие разрушения, часто с образованием сквозных отверстий. Более опасный вид разрушения, чем при

сплошной и пятнистой коррозии, так как, потери массы меньше, чем потери

Подповерхностная коррозия– характеризуется распространением

очага разрушения под поверхностью металла, что приводит к вспучиванию и

расслоению металла продуктами коррозии.

Избирательная коррозияобусловлена разрушением одного из

компонентов или одной из фаз гетерогенного сплава. К избирательной коррозии можно отнести межкристаллитную коррозию, при которой разрушение идет по границам зерен кристаллов. В некоторых случаях разрушение может распространяться внутрь металла, приводя к значительному снижению прочности образца. Этот вид коррозии наиболее опасный, так как трудно контролируемый и называется транскристаллитной (внутрикристаллической) коррозией.

Щелевая коррозия– обусловлена неравномерным обтеканием, средой

различных участков аппарата, что приводит к образованию катодных и анодных участков. Щелевая коррозия является разновидностью электрохимической коррозии.

Для примера рассмотрим некоторые особенности коррозии нержавеющих сталей и способы борьбы с ней. Высокая коррозионная стойкость нержавеющих сталей определяется их способностью легко (покрываться защитной пленкой) даже в обычных атмосферных условиях за

счет кислорода воздуха.

Коррозионная стойкость нержавеющих сталей зависит:

1. От содержания хрома, основного легирующего компонента, с увеличением содержания которого резко возрастает коррозионная стойкость стали.

2. От содержания углерода, с увеличением которого коррозионная

стойкость стали значительно снижается.

3. От структурного состояния сталей. Наибольшей коррозионной стойкостью обладают твердые растворы, легированные хромом и никелем. Нарушение однородности структуры, вследствие образования карбидов или нитридов, приводит к уменьшению содержания хрома в твердом растворе и снижению коррозионной стойкости.

4. От природы агрессивной среды и устойчивости пассивной пленки.

Нержавеющие стали устойчивы в растворах азотной кислоты, различных нейтральных и слабокислых растворах при доступе кислорода и неустойчивы в соляной, серной и плавиковой кислотах. Стали теряют свою устойчивость в сильно окислительных средах вследствие разрушения пассивных пленок, например, в высококонцентрированной азотной кислоте при высоких температурах.

5. От температуры – с повышением температуры коррозионная стойкость нержавеющих сталей резко ухудшается как в окислительных, так и в неокислительных средах.

Коррозия в нержавеющих сталях может протекать как по электрохимическому, так по химическому механизму.

Ввиду сложного структурного состояния и большой разницы в электрохимических и коррозионных свойствах структурных составляющих, нержавеющие стали особенно склонны к проявлению локальных разрушений

(межкристаллитная коррозия, точечная, язвенная).

В сложных конструкциях, имеющих зазоры и щели, характерно проявление щелевой коррозии.

Межкристаллитная коррозия чаще проявляется в сварных соединениях

и в случае неправильной термической обработки. При этом зерна находятся в пассивном состоянии, а границы зерен в активном, вследствие образования карбида хрома. С повышением содержания в стали углерода чувствительность ее к межкристаллитной коррозии резко возрастает. Существенное влияние на чувствительность сталей к межкристаллитной коррозии оказывает размер зерен, причем, чем меньше размер зерна, тем меньше чувствительность стали к коррозии.

Существует несколько эффективных способов борьбы с межкристаллитной коррозией:

1. Снижение содержания углерода, вследствие чего уменьшается карбидообразование по границам зерен. Менее чувствительные стали с содержанием углерода менее 0,3 %.

2. Применение закалки в воду с высоких температур. При этом карбиды хрома по границам зерен переходят в твердый раствор.

3. Применение стабилизирующего отжига при 750-900 °С, при этом происходит выравнивание концентрации хрома по зерну и по границам зерен.

4. Легирование сталей стабилизирующими карбидообразующими элементами – титаном, ниобием, танталом. Вместо карбидов хрома углерод связывается в карбиды титана, тантала, ниобия, а концентрация хрома в твердом растворе остается постоянной.

Читайте также:  Бензогенератор briggs stratton elite 8500 ea

Создание двухслойных сталей – аустенитно-ферритных. Точечная и

язвенная коррозия нержавеющих сталей часто встречается при эксплуатации

изделий в морской воде. Это связано с адсорбцией хлорионов на некоторых

участках поверхности стали, вследствие чего происходит локализация коррозии. Легирование молибденом резко увеличивает сопротивляемость металла действию хлорионов.

Для изделий из нержавеющей стали сложных конструкций, имеющих

щели, зазоры, карманы, характерна щелевая коррозия. Ее механизм связан с

затруднением диффузии кислорода или другого окислителя или анодных замедлителей коррозии в труднодоступные участки конструкции, вследствие

чего на этих участках сталь переходит в активное состояние.

Методы борьбы с этим видом коррозии сводятся прежде всего к устранению зазоров, карманов, щелей, контактов стали с неметаллическими материалами, т. е. к конструктивным мерам. Весьма эффективно также увеличение концентрации окислителя или анодных замедлителей в растворе.

Коррозионная стойкость нержавеющих сталей может быть значительно

повышена методами легирования, применения оптимальных режимов термической, механической и химико-термической обработки сталей.

Наиболее эффективным является увеличение содержания хрома и снижение содержания углерода. Значительно повышается коррозионная стойкость сталей при введении никеля, молибдена, меди, титана, тантала, ниобия, а также палладия и платины. Коррозионная стойкость нержавеющих сталей в значительной степени определяется защитными свойствами поверхностной пассивной пленки, которые зависят от состава стали и качества обработки поверхности.

Наибольшая коррозионная стойкость в атмосферных условиях достигается в полированном состоянии.

Для защиты сталей от окисления используются термодиффузионные

способы насыщения поверхности стали металлами, повышающими жаростойкость (хромирование, алитирование, силицирование).

Известно большое количество способов защиты металлических поверхностей от коррозионного воздействия среды.

Наиболее распространенными являются следующие:

1. Гуммирование – защитное покрытие на основе резиновых смесей с

последующей их вулканизацией. Покрытия обладают эластичностью, вибростойкостью, химической стойкостью, водо- и газонепроницаемостью. Для защиты химического оборудования применяют составы на основе натурального каучука и синтетического натрий-бутадиенового каучука, мягких резин, полуэбонитов, эбонитов и других материалов.

2. Торкретирование – защитное покрытие на основе торкрет-растворов, представляющих собой смесь песка, кремнефторида натрия и жидкого стекла. Механизированное пневмонанесение торкрет-растворов на поверхность металла позволяет получить механически прочный защитный слой, обладающий высокой химической стойкостью ко многим агрессивным средам.

3. Лакокрасочные покрытия – широко применяются для защиты металлов от коррозии, а неметаллических изделий – от гниения и увлажнения.

Представляют собой жидкие или пастообразные растворы смол (полимеров) в органических растворителях или растительные масла с добавлением к ним тонкодисперсных минеральных или органических пигментов, наполнителей и других специальных веществ. После нанесения на поверхность изделия образуют тонкую (до 100.150 мкм) защитную пленку, обладающую ценными физико-химическими свойствами.

Лакокрасочные покрытия для металлов обычно состоят из грунтовочного слоя, обладающего антикоррозионными свойствами и внешнего слоя – эмалевой краски, препятствующей проникновению влаги и агрессивных ионов к поверхности металла. С целью обеспечения хорошего сцепления (адгезии) покрытия с поверхностью ее тщательно обезжиривают и создают определенную шероховатость, например, гидроили дробе- и пескоструйной обработкой.

4. Лакокрасочные покрытия термостойкие – покрытия способные выдерживать температуру более 100 °С в течение определенного времени без

заметного ухудшения физико-механических и антикоррозионных свойств.

В зависимости от природы пленкообразующего компонента различают следующие виды лакокрасочных покрытий термостойких:

— этилцеллюлозные – при 100 °С;

— алкидные на высыхающих маслах – при 120-150 °С;

— фенольно-масляные, полиакриловые, полистирольные – при 200 °С;

— эпоксидные – при 230.250 °С;

— поливинилбутиральные – при 250-280 °С;

— полисилоксановые, в зависимости от типа смолы–при 350-550 °С, и

5. Латексные покрытия – на основе водных коллоидных дисперсий

каучукоподобных полимеров, предназначенных для создания бесшовного,

непроницаемого подслоя под футеровку штучными кислотоупорными изделиями или другими футеровочными материалами. Латексные покрытия обладают хорошей адгезией со многими материалами, в том числе и с металлами.

Они применяются в производствах фосфорной, плавиковой, кремнефтористоводородной кислот, растворов фторсодержащих солей при температуре не более 100 °С.

6. Футерование химического оборудования термопластами. Защитное

действие полимерных покрытий и футеровок в общем случае определяется

Читайте также:  Брюссельская капуста запеченная с сыром

их химической стойкостью в конкретной агрессивной среде, степенью непроницаемости (барьерная защита), адгезионной прочностью соединения с

подложкой, стойкостью к растрескиванию и отслоению, зависящей от внутренних механических свойств полимера и подложки, неравновесностью

процессов формирования защитных слоев и соединений.

Наибольшее распространение при футеровании химического оборудования получили листы и пленки из полиэтилена (ПЭ), полипропилена (ПП), политетрафторэтилена (ПТФЭ), поливинилхлорида (ПВХ), пентапласта (ПТ) и других композиционных материалов. Для повышения физико-механических и защитных свойств, износостойкости листовые футеровочные материалы наполняют минеральными наполнителями (сажа, графит, сернокислотная обработка, ионная бомбардировка и др.).

Для повышения адгезионной активности по отношению к клеям листовые материалы дублируют различными тканями.

Правильно выбранный способ антикоррозионной защиты позволит

обеспечить максимальную долговечность защиты химического оборудования

Классификация процессов коррозии металлов

Факторы коррозии

Классифицировать коррозию принято по механизму, условиям протекания процесса и характеру разрушения. По механизму протекания коррозионные процессы, согласно ГОСТ 5272-68, подразделяются на два типа: электрохимическиеи химические. К электрохимической коррозии относят процесс взаимодействия металла с коррозионной средой, при котором ионизация атомов металла и восстановление окислительных агентов среды протекают не в одном акте и зависят от электронного потенциала (наличия проводников второго рода). Рассмотрим несколько видов электрохимической коррозии:

1) атмосферная– характеризует процесс в условиях влажной воздушной среды. Это наиболее распространенный вид коррозии, так как большинство конструкций эксплуатируют в атмосферных условиях. Ее можно разделить следующим образом: на открытом воздухе, с возможностью попадания на поверхность машин осадков, или с защитой от них в условиях ограниченного доступа воздуха и в замкнутом воздушном пространстве;

2) подземная– разрушение металла в почвах и грунтах. Разновидность этой коррозии – электрохимическая коррозияпод воздействием блуждающих токов. Последние возникают в грунте вблизи источников электрического тока (систем передачи электроэнергии, электрифицированных транспортных путей);

3) жидкостная коррозия, или коррозия в электролитах. Ее частным случаем является подводная коррозия– разрушение металлических конструкций, погруженных в воду. По условиям эксплуатации металлоконструкций, этот вид подразделяют на коррозию при полном и неполном погружении; при неполном погружении рассмотрен процесс коррозии по ватерлинии. Водные среды могут отличаться коррозийной активностью в зависимости от природы растворенных в них веществ (морская, речная вода, кислотные и щелочные растворы химической промышленности и т. п.). При подводной коррозии возможны процессы коррозии оборудования в неводных жидких средах, которые подразделяют на неэлектропроводящие и электропроводящие. Такие среды специфичны для химической, нефтехимической и других отраслей промышленности. К химической коррозии относят процесс, в котором окисление металла и восстановление среды представляют единый акт (отсутствие проводников второго рода). Химическая коррозия– это разрушение металлов в окислительных средах при высоких температурах. Различают два вида: газовая(т. е. окисление металла при нагреве) и коррозия в неэлектролитах:

а) характерной особенностью газовой коррозии является отсутствие влаги на поверхности металла. На скорость газовой коррозии влияет, прежде всего температура и состав газовой среды. В промышленности часто встречаются случаи этой коррозии: от разрушения деталей нагревательных печей до коррозии металла при термической обработке.

б) коррозия металлов в неэлектролитах, независимо от их природы, сводится к химической реакции между металлом и веществом. В качестве неэлектролитов используют органические жидкости.

В особую группу следует выделить виды коррозии в условиях воздействия механических напряжений (механическая коррозия). Эта группа включает: собственно коррозию под напряжением, характеризуемую разрушением металла при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений; коррозионное растрескивание– при одновременном воздействии коррозионной среды и внешних или внутренних механических напряжений растяжения с образованием транскристаллитных трещин.

Различают самостоятельные виды коррозии:

1) коррозия при трении– разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения;

2) фреттинг-коррозия– разрушение при колебательном перемещении двух поверхностей относительно друг друга в условиях воздействия коррозионной среды;

3) коррозионная кавитация– разрушение при ударном воздействии среды;

4) коррозионная эрозия– при истирающем воздействии среды;

5) контактная коррозия– разрушение одного из двух металлов, находящихся в контакте и имеющих разные потенциалы в данном электролите.

Читайте также:  Задиры на поршне бензопилы

Следует различать коррозию и эрозию. Эрозияо латинского слова erodere (разрушать) – постепенное механическое разрушение металла, например при истирании трущихся частей механизмов.

Самостоятельный вид коррозии – биокоррозия– это разрушение металла, при котором в качестве значимого выступает биофактор. Биоагенты– микроорганизмы (грибы, бактерии), которые являются инициаторами или стимуляторами процесса коррозии.

По характеру разрушения коррозия делится на сплошную (или общую) и местную (локальную). Сплошная коррозия охватывает всю поверхность металла, при этом она может быть равномерной или неравномерной. Местная коррозия происходит с разрушением отдельных участков поверхности металлов. Разновидность этой коррозии: точечная (питтинг), коррозия пятнами и сквозная коррозия.

Подповерхностная коррозия начинается с поверхности, но развивается преимущественно под ней таким образом, что продукты коррозии сосредоточены внутри металла. Ее разновидность – послойная коррозия, распространяющаяся преимущественно в направлении пластической деформации металла.

Структурная коррозия связана со структурной неоднородностью металла. Ее разновидность – межкристаллитная– разрушение металла по границам кристаллитов (зерен) металла; внутрикристаллитная– разрушение металла по зернам кристаллитов. Наблюдается при коррозийном растрескивании, протекающем под влиянием внешних механических нагрузок или внутренних напряжений.

Ножевая коррозия– локализованное разрушение металла в зоне сплавления сварных соединений в жидких средах с высокой коррозионной активностью.

Щелевая коррозия– усиление процесса разрушения металла в зазорах между двумя металлами.

Избирательная коррозия– разрушение одной структурной составляющей или одного компонента металла в высокоактивных средах. Существует ряд разновидностей: графитизация чугуна (растворение ферритных или перлитных составляющих) и обесцинкование (растворение цинковой составляющей) латуней.

Коррозия, в зависимости от природы металла, агрессивной среды и других условий, приводит к различным видам разрушений. На рисунке 13 представлены разрезы через прокорродировавший образец металла, показывающие возможные изменения рельефа поверхности в результате коррозии.

Рис. 11. Схематическое изображение различных видов коррозии: а – равномерная коррозия; б – коррозия пятнами; в, г – коррозия язвами; д – точечная коррозия (питтинг); е – подповерхностная коррозия; НН – исходная поверхность металла; КК – рельеф поверхности, измененный вследствие коррозии.

Иногда коррозия протекает со скоростью, одинаковой по всей поверхности; в таком случае поверхность становится только немного более шероховатой, чем исходная (а). Часто наблюдается различная скорость коррозии на отдельных участках: пятнами (б), язвами (в, г). Если язвы имеют малое сечение, но относительно большую глубину (д), то говорят о точечной коррозии (питтинг). В некоторых условиях небольшая язва распространяется вглубь и вширь под поверхностью (е). Неравномерная коррозия значительно более опасна, чем равномерная. Неравномерная коррозия, при сравнительно небольшом количестве окисленного металла, вызывает большое уменьшение сечения в отдельных местах. Язвенная или точечная коррозия могут привести к образованию сквозных отверстий, например, в листовом материале, при малой потере металла.

Приведенная классификация, конечно, условна. Возможны многочисленные формы разрушения, лежащие между характерными типами, показанными на данном рисунке.

Некоторые сплавы подвержены своеобразному виду коррозии, протекающей только по границам кристаллитов, которые оказываются отделенными друг от друга тонким слоем продуктов коррозии (межкристаллитная коррозия). Здесь потери металла очень малы, но сплав теряет прочность. Это очень опасный вид коррозии, который нельзя обнаружить при наружном осмотре изделия.

Не нашли то, что искали? Воспользуйтесь поиском:

Виды коррозионных разрушений разнообразны. По характеру разрушения различают:

равномерную (поверхностную) коррозию;

межкристаллитную (интеркристаллитную) коррозию.

Поверхностная коррозия

Поверхностная коррозия характеризуется равномерным разрушением металла по всей поверхности. Это наименее опасный вид коррозии, так как можно, зная ее скорость, заранее определить возможный срок службы детали.

Местная коррозия

Более опасным видом коррозии является местная коррозия. В этом случае разрушение начинается в отдельных участках детали, распространяясь на значительную глубину с поверхности, и степень этого разрушения трудно определить.

Межкристаллитная (интеркристаллитная) коррозия

Самым опасным видом коррозии является межкристаллитная (интеркристаллитная) коррозия. В этом случае разрушение происходит по границам кристаллов и внешняя поверхность металла не имеет заметных следов коррозии.

Комментировать
77 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector